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Chapter 1
The Real Numbers, R

1.1
Fields

We say that R is a complete ordered field. There are three big ideas to be discussed — completeness,
ordering, and fields! We will first discuss the property on fields, and we say that R satisfies the field axioms
(Definition 1.1)†. There are many properties which might be deemed trivial but we will still discuss them. For
example, the trichotomy property of R‡ states that

if a,b ∈ R then either a < b,a > b or a = b.

This is intuitive!

Definition 1.1 (field axioms). A field consists of a set F satisfying the following properties:
(i) an additive map

+ : F ×F → F where (x,y) 7→ x+ y

(ii) the existence of an additive identity 0 ∈ F
(iii) a negation map

− : F ×F → F where x 7→ −x

(iv) a multiplication map

· : F ×F → F where (x,y) 7→ xy

(v) the existence of a multiplicative identity 1 ∈ F
(vi) a reciprocal map

(−)−1 : F\{0}→ F\{0} where x 7→ x−1

such that the following properties are satisfied:
(i) + is commutative, i.e. for all x,y ∈ F , we have x+ y = y+ x

(ii) + is associative, i.e. for all x,y,z ∈ F , we have (x+ y)+ z = x+(y+ z)
(iii) 0 is the identity for +, i.e. for all x ∈ F , we have x+0 = x = 0+ x
(iv) − is the additive inverse of addition, i.e. for all x ∈ F , we have x+(−x) = 0 = (−x)+ x
(v) · is commutative, i.e. for all x,y ∈ F , we have xy = yx

(vi) · is associative, i.e. for all x,y,z ∈ F , we have (xy)z = x(yz)
(vii) 1 is the identity for ·, i.e. for all x ∈ F , we have x1 = x = 1x

(viii) (−1)−1 is the inverse of ·, i.e. for all x ∈ F , we have xx−1 = 1 = x−1x
(ix) 1 ̸= 0, i.e. F is not the zero (trivial) field
(x) · is distributive over +, i.e. for all x,y,z ∈ F , we have

x(y+ z) = xy+ xz and (x+ y)z = xz+ yz

†An abrupt introduction.
‡In fact, we can regard the trichotomy property of R as a combination of the reflexivity and antisymmetry properties in Definition 1.2

and the comparability property in Definition 1.3. Alternatively, one can refer to (iii) of Proposition 1.5.
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Remark 1.1. When we were discussing the properties of a field in Definition 1.1, recall that multiplica-
tion is denoted by ·, and we can condense x · y as xy. For example, refer to (v), which can also be written
as x · y = y · x.

Example 1.1. The best known fields are those of

Q= field of rational numbers

R= field of real numbers

C= field of complex numbers

Example 1.2. In Number Theory or Abstract Algebra in general,

Qp = field of p-adic numbers

Fp = finite field of p elements

Example 1.3. Let k be a field. Then, define

K (t) to be the field of rational functions over K.

We then discuss the general properties of fields.

Proposition 1.1. The axioms for addition in Definition 1.1 imply the following statements: for all
x,y,z ∈ F ,

(i) Cancellation for +: if x+ y = x+ z, then y = z;
(ii) Uniqueness of 0: if x+ y = x, then y = 0;

(iii) Uniqueness of negative: if x+ y = 0, then y =−x;
(iv) Negative of negative: −(−x) = x

We will only prove (i) and (iv).

Proof. First, we prove (i). Suppose x,y,z ∈ F such that x+ y = x+ z. Then, as −x ∈ F , we have

((−x))+ x+ y = ((−x))+ x+ z

((−x)+ x)+ y = ((−x)+ x)+ z by associativity of +

0+ y = 0+ z since 0 is the additive identity in F

and we conclude that y = z.

We then prove (iv).

Proof. Recall that x+(−x) = 0. The trick now is to consider

−(−x)+(−x) = 0 which again follows by the axiom for negation!

As such,

x+(−x) =−(−x)+(−x)

x =−(−x) by the cancellation property in (i)

so (iv) holds.
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Proposition 1.2. The axioms for multiplication in Definition 1.1 imply the following statements: for
all x,y,z ∈ F ,

(i) Cancellation for ·: if x ̸= 0 and xy = xz, then y = z;
(ii) Uniqueness of multiplicative identity: if x ̸= 0 and xy = x, then y = 1;

(iii) Uniqueness of reciprocal: if x ̸= 0 and xy = 1, then y = 1/x;
(iv) Reciprocal of reciprocal: if x ̸= 0, then 1/(1/x) = x

Proposition 1.3. The field axioms (Definition 1.1) imply the following statements: for all x,y ∈ F ,
(i) 0x = 0;

(ii) if x ̸= 0 and y ̸= 0, then xy ̸= 0
(iii) (−x)y =−(xy) = x(−y)
(iv) (−x)(−y) = xy

We now discuss what it means for a set to be ordered.

Definition 1.2 (partial order). Let S be a set. A partial ordering relation on S is a relation ≤ on S
satisfying the following properties:

(i) Reflexivity: for all x ∈ S, we have x ≤ x
(ii) Transitivity: for all x,y,z ∈ S, we have x ≤ y and y ≤ z imply x ≤ z

(iii) Antisymmetry: for all x,y ∈ S, we have x ≤ y and y ≤ x implies x = y

Definition 1.3 (total order). A total ordering relation on S is partial ordering relation ≤ (Definition
1.2) on S which also satisies the following property that ≤ is comparable:

for all x,y ∈ S we have x ≤ y or y ≤ x.

Example 1.4. Let S be a set. Then, the subset relation ⊆ on P (S) is a partial ordering but not a total ordering
when |S|> 1.

Definition 1.4 (ordered field). An ordered field consists of a field F and a total ordering ≤ on F
saitsyfing the following properties:

(i) ≤ is compatible with +: for all x,y,z ∈ F , we have

x ≤ y implies x+ z ≤ y+ z

(ii) ≤ is compatible with ·: for all x,y,z ∈ F , we have

x ≤ y and z > 0 implies xz ≤ yz

Definition 1.5. If

x > 0 we call x positive and if x < 0 we call x negative and if

x ≥ 0 we call x non-negative and if x ≤ 0 we call x non-positive
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Definition 1.6. We have

F>0 = {x ∈ F : x > 0}
F<0 = {x ∈ F : x < 0}
F≥0 = {x ∈ F : x ≥ 0}= F>0 ∪{0}
F≤0 = {x ∈ F : x ≤ 0}= F<0 ∪{0}

Example 1.5. Q given with the usual ordering ≤ is an ordered field. We will eventually construct R as an
ordered field.

Proposition 1.4. Let F be an ordered field. Then,

for all x,y ∈ F we have x ≤ y if and only if − x ≥−y.

In particular, F<0 =−F>0 and F≤0 =−F≥0.

Proof. We first prove the forward direction. If x≤ y, we take z= (−x)+(−y) in F . As such, x+z≤ y+z, which
implies −y ≤ −x. For the reverse direction, we apply the same idea to (x,y) = (−y,−x) to obtain −(−x) ≤
−(−y). As such, x ≤ y.

Proposition 1.5 (closure properties and trichotomy). For any ordered field F ,
(i) F>0 is closed under addition: F>0 +F>0 ⊆ F>0

(ii) F>0 is closed under multiplication: F>0 ·F>0 ⊆ F>0

(iii) Trichotomy: F = F>0 ⊔{0}∪ (−F>0)

Proposition 1.6. For any ordered field F , the following hold:
(i) for all x ∈ F , we have x2 ≥ 0

(ii) for all x,y ∈ F such that 0 < x < y, we have 0 < 1/y < 1/x

Proof. We first prove (i). Suppose x ≥ 0. Then, x2 = x ·x ≥ 0 ·x = 0 by the compatibility of ≤ with · (recall (ii)
of Definition 1.4). If x < 0, then −x > 0, so x2 = (−x)(−x)> 0 · (−x) = 0 again by (ii) of Definition 1.4.

We then prove (ii). Suppose x > 0. If x−1 ≤ 0, then 0 = x ·0 ≥ x ·x−1 = 1, which is a contradiction. As such, we
must have x−1 > 0. If 0 < x < y, then xy > 0 since F>0 is closed under multiplication ((ii) of Proposition 1.5).
As such, (xy)−1 > 0. Hence,

0 < y−1 = x · (xy)−1 < y · (xy)−1 = x−1

by the compatibility of ≤ with · as mentioned in (ii) of Definition 1.4.

Proposition 1.7 (field characteristic). Let F be an ordered field. Then,

for all n ∈ N we have n ·1 = 1F +1F + · · ·+1F︸ ︷︷ ︸
n terms

in F.

In Abstract Algebra, we say that ordered fields have characteristic zero.
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Proof. We shall induct on n. The base case n = 1 is trivial as 1 > 0 in F . Next, for any n ∈ N, if n · 1 > 0 in
F , then (n+1) ·1 = n ·1+1 > 0 because n ·1 > 0 by the inductive hypothesis and 1 > 0 trivially. As such, the
proposition holds.

For those who are interested in Abstract Algebra, Definition 1.7 would appeal to you.

Definition 1.7. Let F be an ordered field. Then, F is of characteristic zero. Also, there exists a unique
homomorphism of fields

ι : Q ↪→ F called the canonical inclusion of Q into F.

Moreover, ι is injective and order-preserving.

Via the canonical inclusion ι : Q ↪→ F of Q into F , we will identify Q with ι (Q) ⊆ F and regard Q as a
subfield of F . All these will be covered in MA3201.

Remark 1.2. It follows that ordered fields must be infinite. Also, ordered fields cannot be algebraically
closed. To see why, we note that x2 +1 = 0 has no solution in the ordered field F .

1.2
Supremum, Infimum and Completeness

Definition 1.8 (upper and lower bound). Let S be an ordered set, i.e. a set given with a total ordering.
We say that a subset E ⊆ S is

bounded above if and only if there exists B ∈ S such that for all x ∈ E we have x ≤ B

bounded below if and only if there exists A ∈ S such that for all x ∈ E we have A ≤ x

bounded if and only if it is bounded above and bounded below

We say that

A ∈ S is a lower bound of E in S

B ∈ S is an upper bound of E in S

Definition 1.9 (supremum and infimum). Let S be an ordered set and E ⊆ S be any subset. A real
number α is the supremum (least upper bound or LUB) of E if

α is an upper bound of E and α ≤ u for every upper bound u ∈ E, i.e. α = sup(E) .

A real number β is the infimum (greatest lower bound or GLB) of E if

β is a lower bound of E and β ≥ u for every lower bound u ∈ E, i.e. β = inf(E) .

Proposition 1.8. For an ordered set S, let E ⊆ S. Then, the set of upper bounds of E in S is always a
subset of S. However, it may be empty. We remark that

the set of upper bounds = /0 if and only if E is not bounded above in S.
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Example 1.6. Take S =Q and E = Z. Then, E ⊆ S, and we note that the set of upper bounds of Z in Q is /0 as
the sup(Z) does not exist.

Remark 1.3. The supremum and infimum of a set may or may not be elements of the set.

Example 1.7. Consider

E = {x ∈ R : 0 < x < 1} where inf(E) = 0 ̸∈ E and sup(E) = 1 ̸∈ E.

Lemma 1.1 (supremum is unique). Let S be an ordered set. Given E ⊆ S,

if there exists a least upper bound of E in S then sup(E) is unique.

As mentioned, we write sup(E) ∈ S for the unique least upper bound of E in S if it exists.

Proof. The proof is very straightforward. Suppose both α and α ′ are least upper bounds of E in S. Then, one
can show that α ≤ α ′ and α ′ ≤ α by using the two conditions mentioned in Definition 1.9.

At this juncture, we note that a number of properties of the infimum, or greatest lower bound of a set, have
not been discussed. These draw parallelisms with the definition of the supremum (both in Definition 1.9).

Definition 1.10 (least upper bound property). An ordered set S has the least upper bound property
if and only if for any non-empty subset E ⊆ S which is bounded above, there exists a least upper bound
sup(E) ∈ S of E in S.

Example 1.8. Let S0 be an ordered set†, and let S ⊆ S0 be any finite subset. Then, S, which is regarded as
an ordered set, has the least upper bound property (Definition 1.10). In fact, for any non-empty subset E ⊆ S
(which is necessarily finite since any subset of a finite set is also finite),

sup(E) = max(E) exists in S (in fact in E).

Lemma 1.2. Z, as an ordered set, has the least upper bound property.

Proof. Suppose E ⊆ Z is any non-empty subset which is bounded above by b0 ∈ Z. Then, the set

b0 \E = {b0 − x ∈ Z : x ∈ E}= {k ∈ Z : b0 − k ∈ E} is a non-empty subset of Z≥0.

Note that b0 \E is indeed non-empty as E ̸= /0. By the well-ordering property of Z≥0, there exists a smallest
element k0 ∈ b0 \E. As such,

sup(E) = max(E) = b0 − k0 exists in S.

We then continue our discussion by showing that Q does not have the least upper bound property. There are
some things to address first. One would know that the equation

p2 = 2 is not satisfied by any p ∈Q.

†If you are unable to appreciate this example well, always make reference to sets, or number systems, that you already know which
would be applicable here. For example, we can take S0 = Q. Consequently as we would see later, S ⊆ S0 is a finite subset of the
rationals. Suppose S = {−1/2,3,10/7} and E = {−1/2,10/7}. Then, sup(E) exists and it is equal to max(E) = 10/7.
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This shows that
√

2 is irrational, and consequently, Q does not have the least upper bound property. Anyway,
the proof using the unique factorisation of Z is as follows:

p =
a
b

for some a,b ∈ Z and b ̸= 0.

Then, consider the prime factorisations of a and b to obtain

p =
pα1

1 . . . pαr
r

qβ1
1 . . .qβs

s
so p2α1

1 . . . pαr
r = 2 ·qβ1

1 . . .qβs
s .

The exponent of 2 on the LHS is even but it is odd on the RHS, resulting in a contradiction.

Now, let

A =
{

p ∈Q+ : p2 < 2
}
.

Note that A is non-empty and bounded above in Q since 1 ∈ A and for all p ∈ A, we have p > 0 and p2 < 2, so
we must have p < 2. We shall prove that A contains no largest number. More explicitly,

for every p ∈ A there exists q ∈ A such that p < q.

Now, for every p ∈ A, we construct q as follows:

q = p− p2 −2
p+2

=
2p+2
p+2

∈Q+.

Also,

q2 −2 =

(
2p+2
p+2

)2

−2 =
2
(

p2 −2
)

(p+2)2 .

Since p ∈ A, then p2 − 2 < 0, so q > p and q2 − 2 < 0. Hence, q ∈ A and is > p. As such, A contains no
largest number. Anyway, here is a geometrical interpretation of the relationship between p and q (Figure 1). By
constructing the line segment joining

(
p, p2 −2

)
and (2,2) and defining (q,0) to be the point where this line

intersects the x-axis, one can indeed deduce that

q = p− p2 −2
p+2

.
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x

y
y = x2 −2

(
p, p2 −2

)

(2,2)

(q,0)

Figure 1: Graph of y = x2 −2

We are very close to showing that Q does not have the least upper bound property. More explicitly, for every p
in the set of upper bounds of A in Q, one can deduce that there exists q in this set such that q < p. As such, this
set will not contain a smallest element.

Previously, we showed that A contains no largest number, so no element of A can be an upper bound of A.
Similarly, for every p in the set of upper bounds of A in Q, we construct q as follows (Figure 2):

q = p− p2 −2
2p

=
p2 +2

2p
∈Q+

Also, as p2 −2 > 0, it follows that q < p, so

q2 −2 =

(
p2 +2

2p

)2

−2 =

(
p2 −2

2p

)2

> 0

so q ̸∈ A. As such, q is in the set of upper bounds of A in Q.

x

y
y = x2 −2

(
p, p2 −2

)

(q,0)

Figure 2: Graph of y = x2 −2

It follows that Q does not have the least upper bound property.



MA2108 MATHEMATICAL ANALYSIS I Page 11 of 148

Proposition 1.9. Let S be an ordered set with the least upper bound property. Then, it also has the
greatest lower bound property. That is to say, for any non-empty subset B ⊆ S which is bounded below,

there exists a greatest lower bound inf(B) ∈ S of B in S.

Proof. Suppose B ̸= /0 is bounded below. Then, the set of lower bounds of B in S is non-empty and L is bounded
above. By the least upper bound property of S, α = sup(L) exists in S.

We claim that α = inf(B) as well. We first prove that α is a lower bound of B. Note that for all x ∈ B, x is
also in the set of upper bounds of L in S so α ≤ x. As such, α is also in the set of upper bounds of L in S. Next,
we justify that α is the greatest among all lower bounds of B, which holds because α = sup(L).

Example 1.9 (Bartle and Sherbert p. 31 Question 12). Let a,b,c,d be numbers satisfying 0 < a < b and
c < d < 0. Give an example where ac < bd, and one where bd < ac.

Solution. For the first part, we can choose a = 1, b = 2, c =−3, d =−1 so that

ac =−3 and bd =−2 so ac < bd.

For the second part, we can choose a = 1, b = 2, c =−2, d =−2 so that

bd =−4 and ac =−2 so bd < ac.

□

Example 1.10 (Bartle and Sherbert p. 31 Question 14). If 0 ≤ a < b, show that a2 ≤ ab < b2. Show by
example that it does not follow that a2 < ab < b2.

Solution. Suppose we are given that 0 ≤ a < b. We first prove that a2 ≤ ab, which is equivalent to showing that
ab−a2 ≥ 0. As such, a(b−a)≥ 0. Since a ≥ 0 and b > a implies b−a > 0, then it follows that their product
is non-positive, i.e. a(b−a)≥ 0.

We then prove that ab < b2, which is equivalent to showing that b2 − ab > 0. As such, b(b−a) > 0. Since
b > 0 and b > a implies b−a > 0, their product is positive, i.e. b(b−a)> 0.

Having said all these, we show by example that

0 ≤ a < b does not imply a2 < ab < b2.

We choose a = 0 so a2 = 0 and ab = 0, so the inequality a2 < ab does not hold. □

Example 1.11 (Bartle and Sherbert p. 31 Question 17). Show the following: If a ∈ R is such that

0 ≤ a ≤ ε for every ε > 0 then a = 0.

Solution. Since ε > 0 is arbitrary, we can choose ε = a/2, so a ≤ a/2. As such, a/2 ≤ 0, which implies a ≤ 0.
Combining with the fact that a ≥ 0, we conclude that a = 0. □

Example 1.12 (Bartle and Sherbert p. 31 Question 18). Let a,b ∈ R, and suppose that for every ε > 0, we
have a ≤ b+ ε . Show that a ≤ b.
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Solution. Suppose on the contrary that a > b. Then, a−b > 0. Choose ε = (a−b)/2 > 0, so

b+ ε −a = b+
a−b

2
−a =

2b+a−b−2a
2

=
b−a

2
< 0.

This implies b+ ε > a but this contradicts the fact that a ≤ b+ ε . To conclude, we must have a ≤ b. □

Example 1.13 (Bartle and Sherbert p. 39 Question 1). Let

S1 = {x ∈ R : x ≥ 0} .

Show in detail that the set S1 has lower bounds but no upper bounds. Show that inf(S1) = 0.

Solution. We claim that the set

A = {y ∈ R : y ≤ 0} is the set of lower bounds of S1.

Let x ∈ S1 be an arbitrary element. Then, x ≥ 0. Moreover, for any y ∈ R≤0, we have x ≥ 0 ≥ y, which implies
that S1 has lower bounds and they are all contained in A.

Next, we prove that S has no upper bound. Suppose on the contrary that it has one, say M. Then, M ∈ R≥0

is such that for every x ∈ S1, we have x ≤ M. Then, consider the inequality x ≤ M < M+1. As such, M+1 is an
upper bound of S1. By definition of an upper bound, we must have M+1 ≤ M, which leads to a contradiction.
We conclude that S1 has no upper bound.

Lastly, we prove that inf(S1) = 0. Recall that A is the set of lower bounds of S1. As the greatest value of A
is 0, then by definition of infimum (greatest lower bound), we conclude that inf(S1) = 0. □

Example 1.14 (Bartle and Sherbert p. 39 Question 2). Let

S2 = {x ∈ R : x > 0} .

Does S2 have lower bounds? Does S2 have upper bounds? Does inf(S2) exist? Does sup(S2) exist? Prove your
statements.

Solution. Similar to Example 1.13, one can show that S2 has lower bounds (take for example 0) but does not
have any upper bound. Next, we claim that inf(S2) = 0. Consider the set

B = {y ∈ R : y ≤ 0} which is the set of lower bounds of S2.

One can use the argument in Example 1.13 to justify this. Then, the greatest element of B is 0, so inf(S2) = 0.

Lastly, we claim that sup(S2) does not exist. This follows from the fact that S2 is not bounded above, so S2

does not have a least upper bound. □

Example 1.15 (Bartle and Sherbert p. 39 Question 3). Let

S3 = {1/n : n ∈ N} .

Show that sup(S3) = 1 and inf(S3)≥ 0.
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Solution. Let sup(S3) = α . Then, for all x ∈ S3, we must have x ≤ α . That is to say, for any n ∈ N, we must
have 1/n ≤ α . We note that the sequence{

1
n

}∞

n=1
is strictly decreasing as

1
n
− 1

n+1
=

1
n(n+1)

> 0.

As N satisfies the well-ordering property, it has a least element, which is 1. So, 1/1 = 1 is the largest value of
S3, i.e. 1 is an upper bound for S3. We then prove that 1 is indeed the least upper bound. Suppose on the contrary
that there exists ε > 0 such that

1− ε is the least upper bound for S3 where n ∈ N.

We claim that there exists m ∈ N such that

1− ε <
1
m

or equivalently ε > 1− 1
m

> 0.

This leads to a contradiction.

Next, we prove that inf(S3) ≥ 0. Suppose inf(S3) = β . Then, as 1/n > 0 for all n ∈ N, then β ≥ 0. In fact,
we can further show that β = 0. Suppose there exists another lower bound β ′ ≥ 0. Then, there exists N ∈ N
such that 1/N < β ′, contradicting the fact that β ′ is a lower bound. We conclude that inf(S3) = 0. □

Example 1.16 (Bartle and Sherbert p. 39 Question 4). Let

S4 =

{
1− (−1)n

n
: n ∈ N

}
Find inf(S4) and sup(S4).

Solution. For any x ∈ S4, we have

x =

1+1/n if n is odd;

1−1/n if n is even.

Clearly, inf(S4) = 1/2 and sup(S4) = 2. □

Example 1.17 (Bartle and Sherbert p. 40 Question 5). Find the infimum and supremum, if they exist, of
each of the following sets:

(a) A = {x ∈ R : 2x+5 > 0}
(b) B =

{
x ∈ R : x+2 ≥ x2

}
(c) C = {x ∈ R : x < 1/x}
(d) D =

{
x ∈ R : x2 −2x−5 < 0

}
Solution.

(a) The inequality is equivalent to x >−5/2, so sup(A) does not exist but inf(A) =−5/2.
(b) The solution to the inequality is −1 ≤ x ≤ 2, so sup(B) = 2 and inf(B) =−1†.
(c) We have

x2 −1
x

< 0 so
(x+1)(x−1)

x
< 0.

Hence, x ∈ (−∞,−1)∪ (0,1), so sup(C) = 1 and inf(C) =−1.

†Actually, to really argue this, we note that the solution set to the inequality is a compact set (just to jump the gun here, we can apply
what is known as the Heine-Borel theorem. It states that for a subset of the Euclidean n-space S ⊆ Rn, S is compact if and only if S is
closed and bounded). In a compact set, we have sup(S) = max(S) and inf(S) = min(S).
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(d) The solution to the inequality is 1−
√

6 < x < 1+
√

6 so sup(D) = 1+
√

6 and inf(D) = 1−
√

6.

Example 1.18 (Bartle and Sherbert p. 44 Question 1). Show that

sup
{

1− 1
n

: n ∈ N
}
= 1.

Solution. Let S be the mentioned set and suppose sup(S) = α . Then,

for all n ∈ N we have 1− 1
n
≤ α.

Since the sequence {1−1/n}∞

n=1 is decreasing and bounded above by 1, then S is bounded above by 1. Proving
that α is indeed 1 is trivial (we discussed this method multiple times). □

Let us try to better understand the least upper bound property.

Example 1.19. Let E ⊆ R be any non-empty subset that is bounded above. For any a ∈ R, consider the set

a+E = {a+ x ∈ R : x ∈ E} which is also non-empty and bounded above.

Then, we have

sup(a+E) = a+ sup(E) in R.

We will justify this result, i.e. show the equality of two real numbers. One common way to go about proving
this is to show that the LHS ≤ RHS and RHS ≤ LHS directly. However, we see that proving the latter directly
is difficult, so we will resort to using contradiction.

Proof. We first prove that sup(a+E) = a+ sup(E). Note that for any y ∈ a+E, there exists x ∈ E such that
y = a+ x. So, x ≤ sup(E). Adding a to both sides of the inequality yields y ≤ a+E, so a+ sup(E) is an upper
bound of a+E. As such, sup(a+E)≤ a+ sup(E).

We then prove that LHS < RHS leads to a contradiction, which would assert that RHS ≤ LHS. Suppose

sup(a+E)< a+ sup(E) or equivalently sup(E)> sup(a+E)−a.

We claim that sup(a+E)− a is still an upper bound for E. To see why, for all x ∈ E, we have a+ x ∈ a+
E so a+ x ≤ a+ sup(a+E). As such, x ≤ sup(a+E)− a, contradicting the least upper bound property of
sup(E).

Lemma 1.3. Let S be an ordered set, and suppose E ⊆ S. Let u be an upper bound of E. Then,

u = sup(E) if and only if for all ε > 0 there exists x ∈ E such that u− ε < x.

We refer to Figure 3 for an illustration of Lemma 1.3.

xu = sup(E)u− ε

x ∈ E

Figure 3: Illustration of the supremum condition in Lemma 1.3

Example 1.20 (Bartle and Sherbert p. 40 Question 14). Let S be a set that is bounded below. Prove that a
lower bound w of S is the infimum of S if and only if for any ε > 0, there exists t ∈ S such that t < w+ ε .
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Solution. For the forward direction, suppose w = inf(S). So, for any t ∈ S, we have w ≤ t. Suppose on the
contrary that

t ≥ w+ ε for every t ∈ S.

So, w+ ε is also a lower bound for S. However, by definition of the infimum, w is the greatest lower bound for
S, which implies w ≥ w+ ε . As such, ε ≤ 0, which is a contradiction.

For the reverse direction, suppose for any ε > 0, there exists t ∈ S such that t < w+ ε . We already know
that w is a lower bound for S. Suppose v is another lower bound for w. We claim that v ≤ w. Suppose on the
contrary that v > w. Choose ε = w− v > 0. Then, we have

t < w+ ε which implies t < w+(v−w) = v.

As such, v cannot be a lower bound for S, which leads to a contradiction. □

Axiom 1.1. Every non-empty subset of R which is

bounded above
bounded below

has a
supremum;
infimum.

Example 1.21 (Bartle and Sherbert p. 36 Question 5). If a < x < b and a < y < b, show that |x− y|< b−a.

Solution. Suppose on the contrary that |x− y| ≥ b−a. Then, either

x− y ≥ b−a or x− y ≤ a−b.

Note that a< y< b implies −b<−y<−a, so x−y< b−a, contradicting the claim that x−y≥ b−a. Similarly,
b−a < x− y, but again this leads to a contradiction. Hence, we must have |x− y|< b−a. □

Example 1.22 (MA2108 AY19/20 Sem 1 Tutorial 1). Let a,b ∈ R. Show that

max(a,b) =
1
2
(a+b+ |a−b|) and min(a,b) =

1
2
(a+b−|a−b|) .

Solution. We consider two cases, namely a ≥ b and a < b. If a ≥ b, then a−b ≥ 0, then

1
2
(a+b+ |a−b|) = 1

2
(a+b+a−b) = a = max(a,b).

Similarly,
1
2
(a+b−|a−b|= 1

2
(a+b− (a−b) = b = min(a,b).

The case where a < b has similar working. □

Example 1.23 (Bartle and Sherbert p. 40 Question 7). If a set S ⊆R contains one of its upper bounds, show
that this upper bound is the supremum of S.

Solution. Let u ∈ S be an upper bound for S. Suppose v is another upper bound for S such that v < u. Choosing
S ∋ s = u, there exists s ∈ S such that v < s, which contradicts our claim that v < u. As such, we must have
u ≤ v, i.e. if we have another upper bound v of S, then u ≤ v. We conclude that u = sup(S). □

Example 1.24 (Bartle and Sherbert p. 40 Question 8). Let S ⊆ R be nonempty. Show that

u ∈ R is an upper bound of S if and only if the conditions t ∈ R and t > u imply t ̸∈ S.



MA2108 MATHEMATICAL ANALYSIS I Page 16 of 148

Solution. We first prove the forward direction. Suppose u ∈ R is an upper bound of S. Then, for all s ∈ S, we
have s ≤ u. Say t ∈ R is such that t > u. Suppose on the contrary that t ∈ S. Then, because S is bounded above
by u, we must have t ≤ u, contradicting t > u. We conclude that t ̸∈ S.

For the reverse direction, we argue by contradiction — say u is not an upper bound of S. Then, there exists
s0 ∈ S such that u < s0. Let t = s0, then t > u, but this contradicts our hypothesis as any t ∈ R such that t > u
implies t ̸∈ S. However, we have t = s0 ∈ S, which is a contradiction. □

Proposition 1.10 (Archimedean property). For any x,y ∈ R such that 0 < x < y,

there exists n ∈ N such that nx > y in R.

Corollary 1.1. For any ε ∈ R>0,

there exists n ∈ N such that nε > 1 in R.

Theorem 1.1 (density theorem). The rational numbers are dense in R, i.e.

if a,b ∈ R such that a < b then there exists r ∈Q such that a < r < b.

In short, we are always able to find another rational number that lies between two real numbers.

Corollary 1.2. The irrationals are dense in R, i.e.

if a,b ∈ R such that a < b then there exists x ∈Q′ such that a < x < b.

Example 1.25. Q satisfies the Archimedean property. Also, Q is dense in Q with respect to ordering —
clearly, for any rational numbers a and b such that a < b, we can always find another rational number r strictly
in between them. Take for example, r = 1

2 (a+b).

Theorem 1.2 (existence and uniqueness of radicals). Let x > 0 and n ∈ N. Then, exists a unique
positive real number y such that yn = x. The number y is known as the positive nth root of x and thus,

y = n
√

x = x1/n.

Proof. The uniqueness claim is quite obvious — suppose we have two positive real numbers 0 < y1 < y2. Then,
0 < yn

1 < yn
2. As such, given that yn

1 = yn
2, it implies y1 = y2.

We then prove the existence claim†. Let E denote the set consisting of all positive real numbers t such that
tn < x, i.e.

E = {t ∈ R : t > 0 and tn < x} .

First, we claim that y = supE exists in R. By the least upper bound property of R, it suffices to show that
E ̸= /0 and E is bounded above. Consider t = x/(1+ x) ∈ R‡. Since x > 0, then we get 0 ≤ t < 1 and t < x. By

†As mentioned by Prof. Chin Chee Whye, when you encounter the proof in Rudin’s book for the first time (referring to ‘Principles of
Mathematical Analysis’), you will feel so angry to the extent that you will throw the book away.

‡Actually, it is fairly intuitive to consider this function (though we will jump the gun). We can think of the problem as follows:
construct a sequence of positive numbers xn that is increasing, bounded between 0 and 1. Try to think of xn = 1−1/n. However, as the
sequence must be defined at index 0, we simply do a translation to obtain xn = 1−1/(n+1). One checks that xn = n/(n+1).
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induction on k, we note that for all k ∈ N, we have 0 ≤ tk ≤ t < 1, so tn ≤ t < x. To see why, note that tk ≥ 0
is clear since t ≥ 0. As such, it suffices to prove that tk ≤ t. Equivalently, t

(
tk−1 −1

)
≤ 0, so tk−1 − 1 ≤ 0, so

tk−1 ≤ 1 (in fact, this inequality is strict) which holds by the induction hypothesis.

The above shows that t ∈ E, so E ̸= /0.

We then claim that 1+ x ∈ R is an upper bound of E, i.e. for all t ∈ E, one has t ≤ 1+ x. Suppose on the
contrary that there exists t ∈ E such that t > 1+ x, i.e. t > 1 and t > x. Again, by induction on k, we note that
for all k ∈ N, we have tk ≥ t +1. To see why, we consider

tk+1 = t · tk

≥ t (t +1) by induction hypothesis

> t +1 since t > 1

Hence, tn ≥ t > x, contradicting the hypothesis that t ∈ E. So, t ̸∈ E.

Lastly, we shall prove that y = supE, i.e. y is a positive real number satisfying yn = x. This is clear for the
case when n = 1. As such, we will prove the claim for n ≥ 2. To do this, we will show that yn < x and yn > x
both lead to a contradiction. First, note that for any a,b ∈ R such that 0 < a < b, we have the inequality

bn −an < (b−a)nbn−1.

To see why this inequality holds, recall the geometric series formula(
b
a

)n

−1 =

[
1+

b
a
+

(
b
a

)2

+ . . .+

(
b
a

)n−1
](

b
a
−1
)

so

bn −an

an =
1

an−1

(
an−1 +an−2b+an−3b2 + . . .+bn−1)(b−a

a

)
.

Since the expressions on each side contain 1/an, it follows that

bn −an = (b−a)
(
an−1 +an−2b+an−3b2 + . . .+bn−1)

< (b−a)
(
bn−1 +bn−2 ·b+bn−3 ·b2 + . . .+bn−1) since a < b

= (b−a)nbn−1

Assume that yn < x. Choose h such that

0 < h < min

{
1,

x− yn

n(y+1)n−1

}
.

Setting a = y and b = y+h, we have

bn −an = (y+h)n − yn

< hn(y+h)n−1 since bn −an < (b−a)nbn−1 as deduced earlier

≤ hn(y+1)n−1 since h ≤ 1

= x− yn

So, (y+h)n < x. Also, y+h ∈ E. Since y+h > y, this contradicts the fact that y is an upper bound of E.
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Next, assume that yn > x. Again, we will show that this leads to a contradiction. Choose

k such that 0 < k <
yn − x
nyn−1 .

Then, as yn > x implies yn − x > 0, and nyn−1 > 0, it follows that k > 0. Next, by setting b = y and a = y− k,
we have

bn −an = yn − (y− k)n

< knyn−1 since bn −an < (b−a)nbn−1 as deduced earlier

Since yn − (y− k)n < yn − x is equivalent to saying that (y− k)n > x, our goal is to choose k > 0 such that
knyn−1 < yn − x. To be precise, the chosen value of k should be

k =
yn − x
nyn−1 .

If t ≥ y− k, then

yn − tn ≤ yn − (y− k)n < knyn−1 = yn − x.

As such, tn > x and t ̸∈ E. It follows that y− x is an upper bound of E. However, y− k < y, contradicting the
fact that y is the least upper bound of E. To conclude, we must have yn = x.

We analyse the proof of Theorem 1.2. Recall that

y = sup(E) where E = {t ∈ R : t > 0 and tn < x} .

If yn < x, then as shown in Figure 4, we define ε = x− yn in R>0. Try to choose a number of the form yn +δ ,
where δ ∈ R>0 and δ < ε such that yn + δ is of the form (y+h)n, where h ∈ R>0. Consequently, this would
contradict the fact that y is an upper bound for E.

0 y x1/n

0 yn x

ε

Figure 4

In Figure 5, we wish to choose h ∈ R>0 such that 0 < (y+h)n − yn < ε , where (y+h)n − yn = δ . In the proof
of Theorem 1.2, we used the inequality bn − an = (b−a)nbn−1 (which follows by considering some finite
geometric series). As such, (y+h)n−yn < hn(y+h)n−1, so it suffices to choose h∈R>0 so that hn(y+h)n−1 <

ε .
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0 y y+h

h

x1/n

0 yn yn +δ = (y+h)n x

ε

δ

Figure 5

The above is equivalent to choosing h ∈ R>0 so that

h <
ε

n(y+h)n−1 which is impossible.

On the other hand, if yn > x, then we define ε = yn − x, which is in R>0 (Figure 6).

0 x1/n y

0 x yn

ε

Figure 6

In Figure 7, we wish to choose a real number of the form yn −δ , where δ ∈ R>0 and δ ≤ ε such that yn −δ is
of the form (y− k)n, where k ∈ R>0.

Equivalently, we try to choose k∈R>0 such that 0< yn−(y− k)n ≤ ε . By the inequality bn−an =(b−a)nbn−1,
we have yn − (y− k)n < knyn−1 so it suffices to choose k ∈ R>0 such that knyn−1 ≤ ε . This suggests to choose

k =
ε

nyn−1 .

0 x y−h

h

y

0 x yn −δ = (y− k)n yn

ε

δ

Figure 7

Corollary 1.3. If a and b are positive real numbers and n ∈ N, then

(ab)1/n = a1/nb1/n.
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Proof. Let α = a1/n and β = b1/n, so ab=αnβ n = (αβ )n. By the uniqueness of Theorem 1.2, we are done.

We have a nice corollary on R× =R\{0} (Corollary 1.4). This set is defined to be the multiplicative group
of real numbers (will encounter in MA2202 and beyond).

Corollary 1.4. Let R× = R\{0}. Then,

R>0 =
(
R×)2 as subsets of R.

Proof. Let F be an ordered field. The inclusion F>0 ⊇ (F×)
2 is obvious. In particular, this holds for F =R. For

the other inclusion, if x ∈ R>0, then by Theorem 1.2, there exists y ∈ R>0 ⊆ R× such that y2 = x. Hence, the
result follows.

Example 1.26 (Bartle and Sherbert p. 40 Question 6). Let S be a non-empty subset of R that is bounded
below. Prove that

inf(S) =−sup{−s : s ∈ S} .

Solution. This problem aims to prove

inf(S) =−sup(−S) .

Note that inf(S)≤ s for all s ∈ S. So, − inf(S)≥−s, so − inf(S) is an upper bound for −S, which implies

− inf(S)≥ sup(−S) so inf(S)≥−sup(−S) .

For the other direction, since S is bounded below, then −S is bounded above so −s ≤ sup(−S) for all s ∈ S.
Hence,

s ≤−sup(−S) which implies inf(S)≤−sup(−S) .

Combining both inequalities yields the desired result. □

Example 1.27 (Bartle and Sherbert p. 45 Question 4). Let S be a set of non-negative real numbers that is
bounded above. Let a > 0, and let aS = {as : s ∈ S}. Prove that

sup(aS) = asup(S) .

Solution. Suppose u = sup(aS). Then, for all as ∈ aS, we have as ≤ u. Since a > 0, we have

s ≤ u
a
=

sup(aS)
a

which implies sup(S)≤ sup(aS)
a

.

We then prove the reverse direction. Suppose sup(S) = v. Then, for all s ∈ S, we have s ≤ v. As such,

as ≤ av = asup(S) which implies sup(aS)≤ asup(S) .

□

Example 1.28 (Bartle and Sherbert p. 45 Question 7). Let A and B be bounded non-empty subsets of R,
and let

A+B = {a+b : a ∈ A,b ∈ B} .

This is known as the Minkowski sum of two sets. Prove that

sup(A+B) = sup(A)+ sup(B) and inf(A+B) = inf(A)+ inf(B) .
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Solution. We only prove the first result as the second result can be proven similarly. We first prove that

sup(A)+ sup(B)≤ sup(A+B) .

For all a ∈ A and b ∈ B, we have

a+b ≤ sup(A+B) .

Subtracting b from both sides yields

a ≤ sup(A+B)−b.

If we fix b, we see that sup(A+B)−b is an upper bound for A. By definition of supremum, we have

sup(A)≤ sup(A+B)−b which implies b ≤ sup(A+B)− sup(A) ,

i.e. sup(A+B)− sup(A) is an upper bound for any b. As such,

sup(B)≤ sup(A+B)− sup(A) or equivalently sup(A)+ sup(B)≤ sup(A+B) .

We then prove that sup(A)+ sup(B)≥ sup(A+B). Since sup(A) is an upper bound for A, then a ≤ sup(A) for
all a ∈ A. Similarly, b ≤ sup(B) for all b ∈ B. It follows that a+b ≤ sup(A)+ sup(B). So, sup(A)+ sup(B)≥
sup(A+B). By considering both inequalities, the result follows. □

The real numbers satisfy the completeness axiom†.

Definition 1.11 (completeness of R). There are no gaps or missing points in R.

Corollary 1.5. N is not bounded above.

Proof. For any ε > 0, there exists n ∈ N such that 1/n < ε . This is justified by setting x = ε and y = 1.

Example 1.29 (Bartle and Sherbert p. 44 Question 2). If

S =

{
1
n
− 1

m
: n,m ∈ N

}
,

find inf(S) and sup(S).

Solution. Note that
1
n
− 1

m
<

1
n
.

Since nmin = 1, then 1 = 1/1 is an upper bound for S. To see why, we can fix n = 1 and then consider the
following sequence of numbers:

1− 1
1
,1− 1

2
,1− 1

3
, . . . ,1− 1

m
For large m, the sequence increases and tends to 1, S is bounded above by 1. Next, by the Archimedean property,
for any ε > 0, there exists m ∈ N such that

1
m

< ε so 1− 1
m

> 1− ε.

This shows that 1 is an upper bound for S but 1− ε is not an upper bound for S for any ε > 0. As such, 1 is the
least upper bound for S, so supS = 1.

†Definition 1.11 is rather intuitive and simple. In fact, this was coined by Dedekind.
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Next, note that
1
n
− 1

m
>

1
n
−1 >−1,

which implies that −1 is a lower bound for S. Again, to see why, we fix m = 1 and then consider the following
sequence of numbers:

1
1
−1,

1
2
−1,

1
3
−1, . . . ,

1
n
−1

For large n, the sequence decreases and tends to −1, which implies that S is bounded below by −1. Next, by
the Archimedean property, for any ε > 0, there exists n ∈ N such that

1
n
< ε so

1
n
−1 < ε −1.

This shows that −1 is a lower bound for S but −1+ ε is not a lower bound for S for any ε > 0. As such, −1 is
the greatest lower bound for S, so infS =−1. □

We have a very nice geometric interpretation of Example 1.29. Actually, we can also let

S =

{
1
m
− 1

n
: m,n ∈ N

}
because m comes before n in the English alphabet.

Consider the following infinite matrix:

1
1 −

1
1

1
1 −

1
2

1
1 −

1
3

1
1 −

1
4 . . . sup(S) = 1

1
2 −

1
1

1
2 −

1
2

1
2 −

1
3

1
2 −

1
4 . . .

...
1
3 −

1
1

1
3 −

1
2

1
3 −

1
3

1
3 −

1
4 . . .

...
...

...
...

...
. . .

...
inf(S) =−1 . . . . . . . . . . . . 0

The matrix is skew-symmetric since its transpose is equal to negative of itself. Next, for any element, as we
travel rightwards, its value increases; as we travel downwards, its value decreases. By observation, the maximum
and minimum values of this matrix (technically they should be the supremum and infimum respectively) occur
on the boundary†.

Example 1.30 (Bartle and Sherbert p. 40 Question 9). Let S ⊆ R be non-empty. Show that if u = sup(S),
then for every number n ∈ N, the number u− 1/n is not an upper bound of S, but the number u+ 1/n is an
upper bound of S.

Solution. Let u = sup(S) for some /0 ̸= S ⊆R. By definition, the supremum u is an upper bound of S, so u+1/n
is also an upper bound of S.

We then prove that u− 1/n is not an upper bound of S. Suppose on the contrary that it is. Since u = sup(S),
then u−1/n < u. As such, there exists s0 ∈ S such that

u− 1
n
< s0 < u,

which is a contradiction as this shows that u−1/n is not an upper bound of S. □

Example 1.31 (Bartle and Sherbert p. 44 Question 3). Let S ⊆ R be non-empty. Prove that if a number u
in R has the properties

†There is a nice result in Real Analysis which states that when a function is monotonic on a domain, extrema occur at the boundary. By
the term ‘monotonic’, we mean that the sequence of numbers is either increasing or decreasing. For example, the sequence 1,2,−1,4, . . .
is not monotonic but the sequence of positive odd numbers 1,3,5,7,9, . . . is monotonic.
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(i) for every n ∈ N, the number u−1/n is not an upper bound of S;
(ii) For every n ∈ N, the number u+1/n is an upper bound of S,

then u = sup(S).

Solution. By (ii), for any s ∈ S, we have

s ≤ u+
1
n

for all n ∈ N.

Since n can be made arbitrarily large, i.e. n → ∞, then s ≤ u, which holds for all s ∈ S. As such, u is an upper
bound of S.

Next, fix some ε > 0. By the Archimedean property, there exists n0 ∈ N such that 1/n0 ≤ ε . Hence,

u− ε ≤ u− 1
n0

.

Since u−1/n0 is not an upper bound of S by (i), then there exists s0 ∈ S such that

u− ε ≤ u− 1
n0

≤ s0.

Hence, u is the least upper bound of S, which implies u = sup(S). □

Example 1.32 (Bartle and Sherbert p. 40 Question 10). Show that if A and B are bounded subsets of R,
then A∪B is a bounded set. Show that

sup(A∪B) = sup{supA,supB} .

Solution. Since A and B are bounded subsets of R, then there exist m1,m2,M1,M2 ∈ R such that for any a ∈ A
and b ∈ B, we have

m1 ≤ a ≤ M1 and m2 ≤ b ≤ M2.

Let x ∈ A∪B. Then x ∈ A or x ∈ B, which implies

min{m1,m2} ≤ c ≤ max{M1,M2} .

This shows that A∪B is also a bounded subset of R.

Next, we prove that

sup(A∪B) = sup{supA,supB} .

It suffices to prove that sup(A∪B) = max{supA,supB}. From the previous part, we already deduced that
sup(A∪B)≤ max{supA,supB}. To prove the reverse inequality, note that sup(A) is an upper bound for A, so
sup(A∪B)≥ sup(A). A similar argument shows that sup(A∪B)≥ sup(B). Hence,

sup(A∪B)≥ max{supA,supB} .

The result follows. □

Example 1.33 (Bartle and Sherbert p. 40 Question 11). Let S be a bounded set in R and let S0 be a
non-empty subset of S. Show that

infS ≤ infS0 ≤ supS0 ≤ supS.
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Solution. We first prove that sup(S0)≤ sup(S). Note that one can deduce that inf(S)≤ inf(S0). Suppose on the
contrary that sup(S0) > sup(S). Then, sup(S) is not an upper bound for S0, which is a contradiction because
S0 ⊆ S.

Lastly, we prove that inf(S0) ≤ sup(S0). Let sup(S0) = α and inf(S0) = β . Let x ∈ S0. Since β is a lower
bound for x, then x ≥ β . Similarly, since α is an upper bound of x, then x ≤ α , which shows that β ≤ x ≤ α .
Hence, β ≤ α . □

Example 1.34 (Bartle and Sherbert p. 40 Question 12). Let S ⊆ R and suppose sup(S) ∈ S. If u ̸∈ S, show
that

sup
(
S∪{u}

)
= sup{sup(S), u}.

Solution. We consider two cases. Firstly, suppose u ≥ sup(S). Since sup(S) ∈ S and is an upper bound for S,
then s ≤ sup(S) ≤ u for any s ∈ S. As such, u is an upper bound for S∪{u}. If y is another upper bound for
S∪{u}, then it forces y ≥ u. Hence, the least upper bound of S∪{u} is u, so sup(S∪{u}) = u. On the other
hand, since sup = max in this case and u ≥ sup(S), then sup{sup(S) ,u}= u.

Next, we consider the case when u < sup(S). Since sup(S)∈ S, it is the largest element of S, so for all s ∈ S, we
have s ≤ sup(S). As such, sup(S) is an upper bound for S∪{u}. Moreover, if y is any upper bound for S∪{u},
then y ≥ sup(S), so sup(S) = sup(S∪{u}). The result follows. □

Let us take a look at Example 1.35. The result states that The result states that for a function of two variables
f : N×N→ R which is bounded above, the order of taking the supremum does not matter.

Example 1.35 (a Fubini-like identity). Let f : N×N→ R be a function which is bounded above. Prove that

sup
m∈N

sup
n∈N

f (m,n) = sup
n∈N

sup
m∈N

f (m,n) = sup
(m,n)∈N×N

f (m,n).

Here is a nice geometric interpretation of the problem. We can view f (m,n) as a surface. The supremum
represents the highest peak or maximum value attained by this surface.

The process of taking supm∈N first means that for each fixed n, we look at the highest value along the column
{(m,n)}m∈N. Then, we take the supremum of these column-wise maxima over all n, which corresponds to
finding the highest peak among these values. Conversely, taking supn∈N first means scanning along the row
{(m,n)}n∈N for each fixed m, then finding the highest peak among those row-wise maxima.

On the other hand, directly taking the supremum over all ordered pairs (m,n) ∈ N×N means looking at all
points at once and finding the highest value. Since taking the supremum column-first or row-first still results in
scanning all points, they must all yield the same value.

Hence, this result shows that regardless of whether we take the maximum first across rows or columns, we
always reach the same overall highest point in the grid. We now formally discuss the solution.

Solution. Since f is bounded above, we have

f (m,n)≤ sup
m∈N

f (m,n) .

Taking the supremum over all (m,n) ∈ N×N, we have

sup
(m,n)∈N×N

f (m,n)≤ sup
n∈N

sup
m∈N

f (m,n).
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Conversely, we have

sup
n∈N

sup
m∈N

f (m,n)≤ sup
(m,n)∈N×N

f (m,n) so it follows that sup
n∈N

sup
m∈N

f (m,n) = sup
(m,n)∈N×N

f (m,n).

In a similar fashion, one can deduce that

sup
m∈N

sup
n∈N

f (m,n) = sup
(m,n)∈N×N

f (m,n)

The result follows. □

Theorem 1.3. If n is non-square, then
√

n is irrational.

Proof. Suppose on the contrary that
√

n is rational, where n is non-square. Then,

√
n = p/q implies nq2 = p2 where p,q ∈ N,q ̸= 0 and gcd(p,q) = 1.

We consider the prime factorisations of p2 and q2, each one of them having an even number of primes. Thus,
n must also have an even number of primes. As n is non-square, there exists at least a prime with an odd
multiplicity, which is a contradiction.

Theorem 1.4. Every non-empty interval I ⊆R contains infinitely many rational numbers and infinitely
many irrational numbers.

1.3
Important Inequalities

Bernoulli’s inequality (named after Jacob Bernoulli) is an inequality that approximates exponentiations of
1+ x. We discuss a widely-used version of this result.

Theorem 1.5 (Bernoulli’s inequality). For every r ∈ Z≥0 and x ≥−1, we have

(1+ x)n ≥ 1+nx.

The inequality is strict if x ̸= 0 and r ≥ 2.

One can use induction to prove Theorem 1.5.

Example 1.36 (MA2108 AY19/20 Sem 1 Tutorial 1). Use Bernoulli’s inequality to deduce that for any
integer n > 1, the following hold:(

1− 1
n2

)n

> 1− 1
n

and
(

1+
1

n−1

)n−1

<

(
1+

1
n

)n

Solution. The first result is obvious by setting x = −1/n2 in Theorem 1.5. For the second result, we wish to
prove that (

1+ 1
n

)n(
1+ 1

n−1

)n−1 > 1.

Using some algebraic manipulation, we have

1+
1

n−1
=

n
n−1

=
1

1− 1
n

.
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Hence,

LHS =

(
1+

1
n

)n(
1− 1

n

)n−1

=

(
1+

1
n

)n(
1− 1

n

)n(
1− 1

n

)−1

=

(
1− 1

n2

)n(
1− 1

n

)−1

which is > 1. Here, the inequality follows from the first result. □

Theorem 1.6 (QM-AM-GM-HM inequality). Let x1, . . . ,xn ∈ R≥0. Let

Q(n) =

√
1
n

n

∑
i=1

x2
i denote the quadratic mean

A(n) =
1
n

n

∑
i=1

xi denote the arithmetic mean

G(n) = n

√
n

∏
i=1

xi denote the geometric mean

H (n) = n

(
n

∑
i=1

1
xi

)−1

denote the harmonic mean

Then, Q(n)≥ A(n)≥ G(n)≥ H (n). Equality is attained if and only if x1 = . . .= xn.

Remark 1.4. The quadratic mean Q(n) is also referred to as root mean square or RMS.

We first prove that Q(n)≥ A(n).

Proof. By the Cauchy-Schwarz inequality,

n
n

∑
i=1

x2
i ≥

(
n

∑
i=1

xi

)2

which implies
n[Q(n)]2

n
≥ [nA(n)]2.

With some simple rearrangement, the result follows.

Example 1.37 (MA2108S AY16/17 Sem 2 Homework 5). For each n ∈ Z+, let

an =

(
1+

1
n

)n

and bn =

(
1+

1
n

)n+1

.

(a) Show that an is strictly monotonically increasing.
(b) Show that bn is strictly monotonically decreasing.

Hint: Use the GM-HM Inequality.
(c) Show that for each n ∈ Z+, one has an < bn.

Solution.
(a) A special form of the AM-GM inequality states that

x+ny
n+1

≥ (xyn)1/(n+1) .

Setting x = 1 and y = 1+1/n, we have

1+
1

n+1
>

(
1+

1
n

)n/(n+1)

so
(

1+
1

n+1

)n+1

>

(
1+

1
n

)n

which shows that an+1 > an. Note that the inequality is strict since x ̸= y.
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(b) Similar to (a).
(c) Let (1+1/n) = u. Then, bn −an = un+1 −un = un/n, which is positive.

In fact, both sequences an and bn in Example 1.37 converge in R and to the same limit. Justifying this requires
the use of the monotone convergence theorem (Theorem 2.9) which will be covered in due course. The real
number which is the common limit of the sequences an and bn is called Euler’s number† and it is denoted by e.

We now return to the proof of the QM-AM-GM-HM inequality (Theorem 1.6). There are numerous proofs
of the AM-GM inequality like using backward-forward induction (Cauchy), considering ex (Pólya), Lagrange
Multipliers (MA2104) etc. This proof hinges on Jensen’s inequality.

Theorem 1.7 (Jensen’s inequality). For a concave function f (x),

1
n

n

∑
i=1

f (xi)≤ f

(
1
n

n

∑
i=1

xi

)
.

Proof. Consider the logarithmic function f (x) = lnx, where x ∈ R+. It can be easily verified that f (x) is
concave as f ′′ (x) =−1/x2 < 0 (this is a simple exercise using knowledge from MA2002). We wish to prove

ln

(
1
n

n

∑
i=1

xi

)
≥ ln

(
n

√
n

∏
i=1

xi

)
.

Using Jensen’s inequality (Theorem 1.7),

1
n

n

∑
i=1

ln(xi)≤ ln

(
1
n

n

∑
i=1

xi

)
.

Note that
n

∑
i=1

ln(xi) = ln(x1)+ ln(x2)+ ...+ ln(xn) = ln

(
n

∏
i=1

xi

)
.

As such, the inequality becomes

ln

(
1
n

n

∑
i=1

xi

)
≥ 1

n
ln

(
n

∏
i=1

xi

)
.

With some simple rearrangement, the AM-GM inequality follows.

Lastly, we will prove the GM-HM Inequality using the AM-GM Inequality.

Proof. Note that
n

∏
i=1

1
xi

=

(
n

∏
i=1

xi

)−1

,

so we have
n/H(n)

n
≥ 1

G(n)
.

Upon rearranging, we are done.

Theorem 1.8 (triangle inequality). For x,y ∈ R,

|x+ y| ≤ |x|+ |y|

and equality is attained if and only if xy ≥ 0.

†Not to be confused with Euler’s constant as this typically denotes the Euler-Mascheroni constant γ .
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Corollary 1.6. The following hold:
(i) |x− y| ≤ |x|+ |y|

(ii) Reverse triangle inequality: ||x|− |y|| ≤ |x− y|

Proof. (i) can be easily proven by replacing −y with y. We now prove (ii). Write x as x−y+y and y as y−x+x.
Hence,

|x|= |x− y+ y| ≤ |x− y|+ |y|
|y|= |y− x+ x| ≤ |y− x|+ |x|= |x− y|+ |x|

As such, |x|− |y| ≤ |x− y| and |x|− |y| ≤ −|y− x|, and taking the absolute value of |x|− |y|, the result follows.

Example 1.38 (Bartle and Sherbert p. 35 Question 2). If a,b ∈ R, show that

|a+b|= |a|+ |b| if and only if ab ≥ 0.

Solution. We first prove the forward direction. Suppose |a+b|= |a|+ |b|. Squaring both sides yields

|a+b|2 = |a|2 +2 |ab|+ |b|2 .

We note that |a|2 = a2 for any a ∈ R. As such,

(a+b)2 = a2 +2 |ab|+b2

a2 +2ab+b2 = a2 +2 |ab|+b2

which implies ab = |ab|. Hence, ab ≥ 0.

Conversely, suppose we know that ab ≥ 0. Then, either

a ≥ 0 and b ≥ 0 or a ≤ 0 and b ≤ 0.

For the first case, a+b is the sum of two non-negative numbers, which is also non-negative. Hence, |a+b| =
a+b. Since |a|= a and |b|= b, it follows that |a+b|= |a|+ |b|. For the second case, a+b is the sum of two
non-positive numbers, which is also non-positive. As such, |a+b| = −(a+b). Similarly, we also know that
|a|=−a and |b|=−b. The result follows. □

Corollary 1.7 (generalised triangle inequality). For x1, . . . ,xn ∈ R,∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣≤ n

∑
i=1

|xi| .

Proof. Repeatedly apply the triangle inequality (Theorem 1.8).

Example 1.39 (MA2108 AY19/20 Sem 1 Tutorial 1). Prove that if x,y ∈ R, y ̸= 0 and |x| ≤ |y|
2 , then

|x|
|x− y|

≤ 1.

Solution. We wish to prove that |x| ≤ |x− y|. Using the given inequality, we apply the triangle inequality, so

|x| ≤ |y|/2 =
|y+ x− x|

2
≤ |y− x|+ |x|

2
.

The result follows with some simple rearrangement and using the property that |x− y|= |y− x|. □
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Example 1.40 (MA2108S AY16/17 Sem 2 Homework 5; Chebyshev’s sum inequality). Let n ∈ N. Show
that for any elements a1, . . . ,an and b1, . . . ,bn in R with a1 ≥ . . .≥ an and b1 ≥ . . .≥ bn, one has Chebyshev’s
inequality, i.e. (

1
n

n

∑
i=1

ai

)(
1
n

n

∑
i=1

bi

)
≤ 1

n

n

∑
i=1

aibi.

Solution. For any 1 ≤ i, j ≤ n, we have

(ai −a j)(bi −b j)≥ 0

aibi +a jb j ≥ aib j +a jbi

Taking the double sum over all i and j on both sides,

n

∑
j=1

n

∑
i=1

aibi +a jb j ≥
n

∑
j=1

n

∑
i=1

aib j +a jbi

n

∑
j=1

n

∑
i=1

aibi +
n

∑
j=1

n

∑
i=1

a jb j ≥
n

∑
j=1

n

∑
i=1

aib j +
n

∑
j=1

n

∑
i=1

a jbi

n
n

∑
i=1

aibi +n
n

∑
j=1

a jb j ≥
n

∑
i=1

ai

n

∑
j=1

b j +
n

∑
i=1

bi

n

∑
j=1

a j

2n
n

∑
i=1

aibi ≥ 2

(
n

∑
i=1

ai

n

∑
j=1

b j

)
n

∑
i=1

aibi ≥
1
n

n

∑
i=1

ai

n

∑
j=1

b j

Changing the right sum of b j’s to run from i = 1 to i = n, and dividing both sides by n, the result follows. □

Example 1.41 (MA2108S AY16/17 Sem 2 Homework 5; Hölder’s inequality). Let n ∈N. Show that for any
a1, . . . ,an in R with ai ≥ 0 for each 1 ≤ i ≤ n and for any p ∈ N, one has the inequality(

1
n

n

∑
i=1

ai

)p

≤ 1
n

n

∑
i=1

ap
i .

Solution. We use Hölder’s inequality, which states that for a1, . . . ,an and b1, . . . ,bn in R+ and p,q > 1 such
that 1/p+1/q = 1,

n

∑
i=1

aibi ≤

(
n

∑
i=1

ap
i

)1/p( n

∑
i=1

bq
i

)1/q

Set q = p/(p−1) so

n

∑
i=1

aibi ≤

(
n

∑
i=1

ap
i

)1/p( n

∑
i=1

bp/(p−1)
i

)(p−1)/p

(
n

∑
i=1

aibi

)p

≤

(
n

∑
i=1

ap
i

)(
n

∑
i=1

bp/(p−1)
i

)p−1

We can set bi = 1 for all 1 ≤ i ≤ n so the inequality becomes(
n

∑
i=1

ai

)p

≤

(
n

∑
i=1

ap
i

)
np−1

and with some simple algebraic manipulation, the result follows. □
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Chapter 2
Sequences

2.1
Limit of a Sequence

Definition 2.1 (sequence). Let X be a set. A sequence in X is

a function x with domain N i.e. x : N→ X

which assigns to each natural number n an element xn ∈ X . The notation xn is commonly used to denote
the image of n under x, meaning xn = x(n).

Some authors might also use X (n) in Definition 2.1 but xn is the more standard notation.

We give some examples of sequences.

Example 2.1 (constant sequence). Given p ∈ X , for all n ∈ N, define xn = p so we obtain the constant
sequence of value p in X .

Example 2.2. We have the exponential sequence 2n and the factorial sequence n!.

Example 2.3 (recursively defined sequences). Also known as recurrence relations, we can apply the recursion
theorem for N (formally) to construct a map N→ X . For example, we have the Fibonacci sequence

for all n ∈ N we have xn+1 = xn + xn−1 defined by the initial conditions x0 = x1 = 1.

Definition 2.2 (absolute value). Let F be an ordered field. The absolute value on F is the map

|·| : F → F≥0 defined by x 7→ |x|=

x if x ≥ 0;

−x if x < 0.

Proposition 2.1. For any x,y ∈ F , we have the following:
(i) Positive-definiteness: |x| ≥ 0 in F and equality holds if and only if x = 0 in F

(ii) Multiplicativity: |xy|= |x| |y| in F≥0

(iii) Triangle inequality: |x+ y| ≤ |x|+ |y| (recall Theorem 1.8)

Definition 2.3 (neighbourhood). Let F be an ordered field. For any a ∈ F and ε > 0, define

Vε (a) = {x ∈ R : |x−a|< ε}= (a− ε,a+ ε) (Figure 8) to be the ε-neighbourhood of a.

x
aa− ε a+ ε

Figure 8: ε-neighbourhood of a
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Definition 2.4 (formal definition of limit). Let F be an ordered field and {xn}n∈N be a sequence in F .
We say that L is the limit of the sequence if

for every ε > 0 there exists K ∈ N such that for all n ≥ K we have |xn −L|< ε.

Equivalently, xn ∈Vε (L). If L exists, then we say that {xn}n∈N converges to L in F (or simply {xn}n∈N is
convergent); {xn}n∈N diverges otherwise.

Theorem 2.1 (uniqueness of limit of sequence). The limit of a sequence {xn}n∈N, if it exists, is unique.
That is to say, if L,L′ ∈ F for some ordered field F such that

lim
n→∞

xn = L and lim
n→∞

xn = L′ then L = L′.

Proof. Suppose on the contrary that L and L′ are two distinct limits of {xn}n∈N. By way of contradiction, say
L ̸= L′. Then, we can write ε = |L−L′| ∈ F>0. The trick is to observe that ε/2 ∈ F>0. Since xn → L, there exists
K1 ∈ N such that for all n ≥ K1, the inequality

|xn −L|< ε
′ =

ε

2
holds.

Similarly, as xn → L′, then there exists K2 ∈ N such that for all n ≥ K2, the inequality∣∣xn −L′∣∣< ε
′ =

ε

2
holds.

We define K = max{K1,K2}, which is also ∈ N. Then, for all n ≥ K, we have∣∣L−L′∣∣= ∣∣L− xn + xn −L′∣∣≤ |xn −L|+
∣∣xn −L′∣∣< 2ε

′ = ε.

Here, the first inequality follows from the triangle inequality. Since ε is arbitrary, we can set |L−L′| = 0,
resulting in L = L′, contradicting the earlier assumption that L and L′ are distinct.

Remark 2.1. The triangle inequality is a helpful tool when finding limits. Note that changing a finite
number of terms in a sequence does not affect its convergence or its limit.

Same as the formal definition of a limit in MA2002, to prove that a given sequence xn converges to L, we
first express |xn −L| in terms of n, and find a simple upper bound, L, for it. Then, let ε > 0 be arbitrary. We find
K ∈ N such that

for all n ≥ K we have L < ε or equivalently |xn −L|< ε.

Example 2.4. Prove that

lim
n→∞

1
n
= 0.

Solution. Let ε > 0. By the Archimedean property (Proposition 1.10), there exists K ∈ N such that K > 1/ε .
So, if n ≥ K, then n > 1/ε . As such, 1/n < ε . We conclude that for all n ≥ K, |1/n−0|< ε . □

Example 2.5. Prove that

lim
n→∞

2n2 +1
n2 +3n

= 2.

Solution. We have ∣∣∣∣2n2 +1
n2 +3n

−2
∣∣∣∣= ∣∣∣∣ 1−6n

n2 +3n

∣∣∣∣≤ 1+6n
n2 +3n

<
1+6n

n2 <
n+6n

n2 =
7
n
.
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Let ε > 0 be given. Choose K ∈ N such that K > 7/ε . Then, for all n ≥ K, we have∣∣∣∣2n2 +1
n2 +3n

−2
∣∣∣∣< 7

n
≤ 7

K
< ε

and the result follows. □

Example 2.6 (Bartle and Sherbert p. 62 Question 5). Show that

(a) lim
n→∞

n
n2 +1

= 0 (b) lim
n→∞

2n
n+1

= 2 (c) lim
n→∞

3n+1
2n+5

=
3
2 (d) lim

n→∞

n2 −1
2n2 +3

=
1
2

Solution.
(a) Let ε > 0 be arbitrary. Choose N = 1/⌈ε⌉ in N. Then, for all n ≥ N, we have∣∣∣∣ n

n2 +1
−0
∣∣∣∣= ∣∣∣∣ n

n2 +1

∣∣∣∣≤ ∣∣∣ n
n2

∣∣∣= 1
|n|

≤ 1
N

< ε.

(b) Let ε > 0 be arbitrary. Choose N = 2/⌈ε⌉ in N. Then, for all n ≥ N, we have∣∣∣∣ 2n
n+1

−2
∣∣∣∣= ∣∣∣∣2n−2n−2

n+1

∣∣∣∣= 2
|n|

≤ 2
N

< ε.

(c) Let ε > 0 be arbitrary. Choose N = ⌈13/4ε⌉. Then, for all n ≥ N, we have∣∣∣∣3n+1
2n+5

− 3
2

∣∣∣∣= ∣∣∣∣ 13
2(2n+5)

∣∣∣∣≤ 13
4 |n|

≤ 13
4N

< ε.

(d) Let ε > 0 be arbitrary. Choose N =
⌈√

5/4ε

⌉
. Then, for all n ≥ N, we have∣∣∣∣ n2 −1

2n2 +3
− 1

2

∣∣∣∣= 5
2 |2n2 +3|

≤ 5
4n2 ≤ 5

4N2 < ε.

Example 2.7 (Bartle and Sherbert p. 62 Question 6). Show that

(a) lim
n→∞

1√
n+7

= 0 (b) lim
n→∞

2n
n+2

= 2 (c) lim
n→∞

√
n

n+1
= 0 (d) lim

n→∞

(−1)n

n2 +1
= 0

Solution.
(a) Let ε > 0 be arbitrary. Choose N =

⌈
1/ε2

⌉
. Then, for all n ≥ N, we have∣∣∣∣ 1√

n+7
−0
∣∣∣∣≤ 1√

n
≤ 1√

N
< ε.

(b) Let ε > 0 be arbitrary. Choose N = ⌈4/ε⌉. Then, for all n ≥ N, we have∣∣∣∣ 2n
n+2

−2
∣∣∣∣= ∣∣∣∣ 4

n+2

∣∣∣∣≤ 4
|n|

≤ 4
N

< ε.

(c) Let ε > 0 be arbitrary. Choose N =
⌈
1/ε2

⌉
. Then, for all n ≥ N, we have∣∣∣∣ √n

n+1
−0
∣∣∣∣= √

n
n+1

≤
√

n
n

=
1√
n
≤ 1√

N
< ε.

(d) Let ε > 0 be arbitrary. Choose N =
⌈
1/
√

ε
⌉
. Then, for all n ≥ N, we have∣∣∣∣(−1)n

n2 +1
−0
∣∣∣∣= 1

n2 +1
≤ 1

n2 ≤ 1
N2 < ε.

Example 2.8 (Bartle and Sherbert p. 69 Question 1). For xn given by the following formulas, establish
either the convergence or the divergence of the sequence X = {xn}n∈N:
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(a) xn =
n

n+1 (b) xn =
(−1)n n

n+1
(c) xn =

n2

n+1
(d) xn =

2n2 +3
n2 +1

Solution.
(a) The sequence converges to 1. We will formally prove this. Let ε > 0 be arbitrary. Choose N = ⌈1/ε⌉ in

N. Then, for all n ≥ N, we have ∣∣∣∣ n
n+1

−1
∣∣∣∣= ∣∣∣∣ 1

n+1

∣∣∣∣≤ 1
|n|

≤ 1
N

< ε.

(b) We claim that the sequence diverges. Suppose on the contrary that the limit is L. Then, for any ε > 0,
there exists N ∈ N such that for all n ≥ N, we have∣∣∣∣(−1)n n

n+1
−L
∣∣∣∣< ε.

Let ε = 1. If n is even, then there exists k ∈ Z such that n = 2k so∣∣∣∣∣(−1)2k ·2k
2k+1

−L

∣∣∣∣∣< 1 so
∣∣∣∣ 2k
2k+1

−L
∣∣∣∣< 1.

Upon expansion, we have

L−1 <
2k

2k+1
< L+1 and we see that lim

k→∞

2k
2k+1

= 1.

On the other hand, if n is odd, then there exists k ∈ Z such that n = 2k+1 so∣∣∣∣∣(−1)2k+1 · (2k+1)
2k+2

−L

∣∣∣∣∣< 1 so
∣∣∣∣−2k−1

2k+2
−L
∣∣∣∣< 1.

Upon expansion, we have

L−1 <
−2k−1
2k+2

< L+1 but however lim
k→∞

−2k−1
2k+2

=−1.

Since both limits are different, this leads to a contradiction.
(c) We claim that the sequence diverges. To see why, we have the following inequality:∣∣∣∣ n2

n+1

∣∣∣∣≥ ∣∣∣∣n2

n2

∣∣∣∣= 1 so for sufficiently large n
∣∣∣∣ n2

n+1

∣∣∣∣≥ 1

so the sequence diverges.
(d) We claim that the sequence converges to 2. Let ε > 0 be arbitrary. Then, choose N =

⌈
1/
√

ε
⌉
. As such,∣∣∣∣2n2 +3

n2 +1
−2
∣∣∣∣= ∣∣∣∣ 1

n2 +1

∣∣∣∣≤ ∣∣∣∣ 1
n2

∣∣∣∣< 1
N2 < ε.

Example 2.9 (Bartle and Sherbert p. 69 Question 6). Find the limits of the following sequences:

(a) lim
n→∞

(
2+

1
n2

)2
(b) lim

n→∞

(−1)n

n+2
(c) lim

n→∞

√
n−1√
n+1

(d) lim
n→∞

n+1
n
√

n

Solution.
(a) 4
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(b) We claim that the limit is 0. To see why, let ε > 0 be arbitrary. Choose N = ⌈1/ε⌉ in N. As such,∣∣∣∣(−1)n

n+2
−0
∣∣∣∣= 1

|n+2|
≤ 1

N
< ε.

(c) We have

lim
n→∞

√
n−1√
n+1

= lim
n→∞

1−1/
√

n
1+1/

√
n
= 1.

(d) The limit is

lim
n→∞

n+1
n

· lim
n→∞

1√
n
= 1 ·0 = 0.

Example 2.10 (Bartle and Sherbert p. 62 Question 12). Show that

lim
n→∞

(√
n2 +1−n

)
= 0.

Solution. We will use the formal definition of a limit to prove that the limit is 0. Before that, to see why one
can make this deduction, we have

√
n2 +1−n =

(√
n2 +1−n

)(√
n2 +1+n

)
√

n2 +1+n
=

1√
n2 +1+n

so as n→∞, the limit goes to zero. We now prove this formally. Let ε > 0 be arbitrary. Then, choose N = ⌈1/2ε⌉
in N. So, for all n ≥ N, we have∣∣∣√n2 +1−n−0

∣∣∣= ∣∣∣√n2 +1−n
∣∣∣

=

∣∣∣∣∣∣
(√

n2 +1−n
)(√

n2 +1+n
)

√
n2 +1+n

∣∣∣∣∣∣
=

∣∣∣∣ n2 +1−n2
√

n2 +1+n

∣∣∣∣
=

1√
n2 +1+n

Now, note that
√

n2 +1 ≥
√

n2 = n so
√

n2 +1+n ≥ 2n. Hence,

1√
n2 +1+n

≤ 1
2n

≤ 1
2N

< ε.

□

Example 2.11 (Bartle and Sherbert p. 70 Question 10). Determine the limits of the following sequences:
(a)

√
4n2 +n−2n

(b)
√

n2 +5n−n

Solution.
(a) We have

lim
n→∞

(√
4n2 +n−2n

)
= lim

n→∞

4n2 +n−4n2
√

4n2 +n+2n
= lim

n→∞

n√
4n2 +n+2n

= lim
n→∞

1√
4+1/n+2

=
1
4
.

(b) We have

lim
n→∞

(√
n2 +5n−n

)
= lim

n→∞

n2 +5n−n2
√

n2 +5n+n
= lim

n→∞

5√
1+5/n+1

=
5
2
.
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Example 2.12 (Bartle and Sherbert p. 70 Question 13). If a > 0,b > 0, show that

lim
n→∞

(√
(n+a)(n+b)−n

)
=

a+b
2

.

Solution. Let ε > 0 be arbitrary. Then, choose N =
⌈
(a−b)2

4ε

⌉
in N, and also let k = 1

2 (a+b) for convenience.
So, for all n ≥ N, we have∣∣∣∣√(n+a)(n+b)−n− a+b

2

∣∣∣∣= ∣∣∣√(n+a)(n+b)−n− k
∣∣∣

=

∣∣∣∣∣∣
(√

(n+a)(n+b)− (n+ k)
)(√

(n+a)(n+b)+(n+ k)
)

√
(n+a)(n+b)+(n+ k)

∣∣∣∣∣∣
=

∣∣∣∣∣ (n+a)(n+b)− (n+ k)2√
(n+a)(n+b)+(n+ k)

∣∣∣∣∣
=

∣∣∣∣∣n2 +an+bn+ab−n2 −2kn− k2√
(n+a)(n+b)+(n+ k)

∣∣∣∣∣
=

∣∣∣∣∣an+bn+ab− (a+b)n−
(a+b

2

)2√
(n+a)(n+b)+(n+ k)

∣∣∣∣∣
At this juncture, note that the numerator simplifies to

ab−
(

a+b
2

)2

= ab− a2 +2ab+b2

4
=−(a−b)2

4
.

By considering the denominator, we have√
(n+a)(n+b)+(n+ k)≥

√
(n+a)(n+b)≥

√
n2 = n

so ∣∣∣∣√(n+a)(n+b)−n− a+b
2

∣∣∣∣≤ (a−b)2

4n
≤ (a−b)2

4N
< ε.

□

In Example 2.12, it was stated that a,b > 0. This condition is not surprising because the expression√
(n+a)(n+b) must be well-defined for all relevant values of n. Specifically, the square root function requires

that its argument be non-negative, meaning that (n+a)(n+b)> 0.

For this inequality to hold for all sufficiently large n, both n + a and n + b must be either simultaneously
non-negative or simultaneously non-positive. If either a or b were negative, there would exist some values of
n for which (n+a)(n+b)< 0, making the square root expression undefined in the real number system. Thus,
ensuring that a,b > 0 guarantees the validity of the expression for all sufficiently large n.

Example 2.13 (Bartle and Sherbert p. 93 Question 3). Show that if xn > 0 for all n ∈ N, then

lim
n→∞

xn = 0 if and only if lim
n→∞

1
xn

= ∞.

Solution. We first prove the forward direction. Suppose

lim
n→∞

xn = 0.
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Let ε > 0 be arbitrary and set M = 1/ε . Then, there exists N ∈ N such that for n ≥ N, |xn| < ε = 1/M. Thus,
for n ≥ N, we have 1/xn > M, and the result follows.

For the reverse direction, we note that there exists N ∈N such that for n ≥ N, 1/xn > M. Let ε > 0 be arbitrary
and set M = 1/ε . Then, 1/xn > 1/ε , so |xn|< ε . The result follows. □

Example 2.14 (Bartle and Sherbert p. 93 Question 7). Let {xn}n∈N and {yn}n∈N be sequences of positive
numbers such that

lim
n→∞

xn

yn
= 0.

(a) Show that if limxn = ∞, then limyn = ∞.
(b) Show that if {yn}n∈N is bounded, then limxn = 0.

Solution.
(a) Since

lim
n→∞

xn = ∞ then there exists K ∈ N such that for all n ≥ K we have xn > 1.

Since

lim
n→∞

xn

yn
= 0 then there exists N ∈ N such that for all n ≥ N we have

∣∣∣∣xn

yn

∣∣∣∣< ε.

Thus,
1
|yn|

<

∣∣∣∣xn

yn

∣∣∣∣< ε for all n ≥ max{K,N} ,

which shows that
lim
n→∞

1
yn

= 0.

By Example 2.13, the result follows.
(b) Since yn is bounded, then there exists M > 0 such that 0 < |yn| ≤ M. We wish to prove that there exists

N ∈ N such that whenever n ≥ N, |xn|< ε . We have |xn/yn|< ε/M so |xn|< ε/M ·M = ε .

Definition 2.5 (eventually constant). Let {xn}n∈N be a sequence in an ordered field F . We say that the
sequence is eventually constant if and only if there exists N ∈N such that for all n ≥ N, we have xn = xN .

Definition 2.6 (boundedness). Let {xn}n∈N be a sequence in an ordered field F . We say that the
sequence is bounded in F if and only if

the set {xn ∈ F : n ∈ N} is bounded in F.

Theorem 2.2 (limit theorems). Let F be an ordered field and {xn}n∈N and {yn}n∈N be convergent
sequences in F . Then, the following properties hold:

(i) {xn}n∈N is convergent, i.e. if

lim
n→∞

xn = L then |xn| ≤ M for some M ∈ R

(ii) Linearity: Just like how linear operators (i.e. derivatives and integrals) work, we have a similar
result for limits. Suppose α,β ∈ F and

lim
n→∞

xn = L1 and lim
n→∞

yn = L2.

Then,
{αxn ±βyn}n∈N converges i.e. lim

n→∞
(αxn ±βyn) = αL1 ±βL2.
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(iii) Product and quotient: Considering the sequences xn and yn as mentioned in (ii),

lim
n→∞

xnyn = L1L2 and lim
n→∞

xn

yn
=

L1

L2
provided that yn,y ̸= 0 for all n ∈ N

(iv) If there exists N ∈ N such that for all n ≥ N, we have xn ≤ yn in F , then

lim
n→∞

xn ≤ lim
n→∞

yn in F

The converse of Theorem 2.2 is not true as not all bounded sequences are convergent.

Example 2.15. As an example, the sequence xn = (−1)n is bounded by −1 and 1 and it oscillates about only
these two values. We claim that {xn}n∈N does not converge in F . By way of contradiction, say

lim
n→∞

xn = L in F.

Set ε = 1. Then, there exists N ∈ N such that for all n ≥ N, we have |xn −L| < 1. Hence, for odd n ≥ N, we
have |−1− p| < 1, which implies −1 < −1− p < 1, so p < 0. On the other hand, for even n ≥ N, we have
|1− p|< 1, which implies −1 < 1− p < 1, which implies p > 0. This leads to a contradiction!

We first prove (i) of Theorem 2.2.

Proof. We wish to prove that every convergent sequence is bounded. Suppose

lim
n→∞

xn = L.

Then, for every ε > 0, there exists N ∈ N such that for all n ≥ N, we have |xn −L| < ε . Set ε = 1. Then, take
K ∈N such that |xn−L|< 1 for all n ≥ K. So, L−1 < xn < L+1. Let |xn|= max{|L−1| , |L+1|} for all n ≥ K.
Since {|x1| , . . . , |xK−1|} is a finite set of numbers in F , it is bounded, so it contains a maximum. As such, for
1 ≤ n ≤ K −1, we have |xn| ≤ A for some A ∈ F . Define

M = max{|L−1| , |L+1| ,A}

so |xn| ≤ M and the result follows.

Example 2.16 (sequences in Q diverge). Let xn = n. Then, the sequence {xn}n∈N in Q is not bounded in Q
(simple application of the Archimedean property in Q). By (i) of Theorem 2.2, {xn}n∈N does not converge in
Q.

We then prove (ii) of Theorem 2.2.

Proof. We shall prove that
lim
n→∞

(xn + yn) = L1 +L2.

We know that there exist K1,K2 ∈ N such that

|xn −L1|<
ε

2
for all n ≥ K1 and |yn −L2|<

ε

2
for all n ≥ K2.

Set K = max{K1,K2}. By the triangle inequality (Theorem 1.8),

|xn −L1 + yn −L2|< |xn −L1|+ |yn −L2|< ε

and the result follows.

For (iii) of Theorem 2.2, we only prove the result involving the product of two sequences.
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Proof. Since |xn| is convergent, then it is bounded by (i) of Theorem 2.2, i.e. |xn| ≤ M1 for all n ∈ N. Thus,

|xnyn −L1L2|= |xnyn − xnL2 + xnL2 −L1L2|
≤ |xnyn − xnL2|+ |xnL2 −L1L2| by the triangle inequality (Theorem 1.8)

= |xn||yn −L2|+ |L2||xn −L1|
≤ M1|yn −L2|+ |L2||xn −L1|

Set M = max{M1, |L2|}> 0. So,

M1|yn −L2|+ |L2||xn −L1| ≤ M(|yn −L2|+ |xn −L1|).

Let ε > 0 be arbitrary. Then, there exist K1,K2 ∈ N such that

|xn −L1|< ε/2M for all n ≥ K1

|yn −L2|< ε/2M for all n ≥ K2

Let K = max{K1,K2}. Hence,

|xnyn −L1L2|< M
(

ε

2M
+

ε

2M

)
< ε.

and we are done.

Example 2.17 (Bartle and Sherbert p. 62 Question 10). Prove that if

lim
n→∞

xn = x > 0,

then there exists M ∈ N such that xn > 0 for all n ≥ M.

Solution. By the formal definition of a limit, for every ε > 0, there exists N ∈ N such that for all n ≥ N,
|xn − x|< ε . Hence,

x− ε < xn < x+ ε.

Since ε > 0 can be made sufficiently small, we can let ε = x/2 so xn > x/2 > 0. Choosing M = N, the result
follows. □

Example 2.18 (Bartle and Sherbert p. 62 Question 18). If

lim
n→∞

xn = x > 0,

show that there exists K ∈ N such that if n ≥ K, then x/2 < xn < 2x.

Solution. Let ε > 0 be arbitrary. Then, there exists K ∈ N such that for all n ≥ K, we have |xn − x| < ε . So,
x− ε < xn < x+ ε . Since ε > 0 can be made sufficiently small, then we can let ε = x/2 so x/2 < xn < 3x/2 <

2x. □

Corollary 2.1. If xn converges and k ∈ N, then

lim
n→∞

xk
n =

(
lim
n→∞

xn

)k
.

Theorem 2.3 (squeeze theorem). Let xn,yn and zn be sequences of numbers such that for all n ∈ N,
xn ≤ yn ≤ zn. If

lim
n→∞

xn = lim
n→∞

zn = L then lim
n→∞

yn = L.
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Proof. Let ε > 0. Then, there exists K ∈ N such that for all n ≥ K, we have

|xn −a|< ε and |zn −a|< ε.

Working with the modulus, we have

−ε < xn −a < ε and − ε < zn −a < ε.

Thus,
−ε < xn −a ≤ yn −a ≤ zn −a < ε

which implies |yn −a|< ε .

Example 2.19. Evaluate the following limit:

lim
n→∞

n

∑
k=1

1√
n2 + k

Even though one might think that the Riemann sum comes into play, it actually does not work in this case
because

lim
n→∞

n

∑
k=1

1√
n2 + k

= lim
n→∞

1
n

n

∑
k=1

1√
1+ k/n2

and setting

f
(

k
n

)
=

√
1+

k
n2 ,

it is impossible to obtain an explicit expression for f (x).

Solution. We use the squeeze theorem to help us. As

n√
n2 +n

≤
n

∑
k=1

1√
n2 + k

≤
n

∑
k=1

1√
n2

,

then

lim
n→∞

n√
n2 +n

≤ lim
n→∞

n

∑
k=1

1√
n2 + k

≤ n√
n2

lim
n→∞

1√
1+ 1

n

≤ lim
n→∞

n

∑
k=1

1√
n2 + k

≤ 1

1 ≤ lim
n→∞

n

∑
k=1

1√
n2 + k

≤ 1

By the squeeze theorem, the required limit is 1. □

Theorem 2.4 (limit theorems). The following hold:
(i) For any p,q ∈ N, we have

lim
n→∞

1
np/q = 0

(ii) For any p > 0, we have
lim
n→∞

n
√

p = 1

(iii) We have

lim
n→∞

n
√

n = 1
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(iv) For any a > 1 and k ∈ Z≥0 sufficiently large, we have

lim
n→∞

nk

an = 0

(v) For any x ∈ R with |x|< 1, one has
lim
n→∞

xn = 0

We first prove (i) of Theorem 2.4.

Proof. Given any ε > 0, by Theorem 1.2, there exists a unique
(
ε1/p

)q
> 0 such that

(
εq/p

)p
= εq. By the

Archimedean property (Proposition 1.10), there exists N ∈ N such that N · εq/p > 1. Thus, for all n ≥ N,

n · εq/p > 1 so np · εq > 1.

As such,

0 <
1
np < ε

q so 0 <
1

np/q < ε
1/q.

Hence, the result follows.

We then prove (ii) of Theorem 2.4.

Proof. There are three cases to consider. Firstly, if p = 1, then we obtain the constant sequence 1, so obviously
the limit is 1 as well. Next, if p > 1, for every n ∈ N, set xn = n

√
p− 1. Then, p = (1+ xn)

n. By the binomial
theorem (one can also interpret it as Bernoulli’s inequality in Theorem 1.5),

for all n ∈ N we have p ≥ 1+nxn so 0 ≤ xn ≤
p−1

n
.

By the squeeze theorem 2.3, the result follows.

For the case where p < 1, then 1/p > 1 so

lim
n→∞

n

√
1
p
= 1.

Hence,

lim
n→∞

n
√

p = lim
n→∞

1
n
√

1/p
=

1

lim
n→∞

n
√

1/p
=

1
1
= 1.

The result follows.

Next, we prove (iii) of Theorem 2.4.

Proof. For each n ∈ N, set xn = n
√

n− 1, so n = (1+ xn)
n. By Bernoulli’s inequality (Theorem 1.5), for all

n ≥ N, we have

n ≥ 1+nxn so 0 < xn ≤
n−1

n
= 1− 1

n
but this is a useless statement because it just shows that 0 < xn ≤ 1. Sadly, we are unable to apply the squeeze
theorem here. As such, we use the binomial theorem. Observe that for n ≥ 2, we have

n = (1+ xn)
n = 1+nxn +

(
n
2

)
x2

n + . . .+ xn
n ≥

n(n−1)
2

x2
n.

As such, for n ≥ 2, we have

0 ≤ xn ≤
√

2
n−1

.

By the squeeze theorem (Theorem 2.3), the limit of xn is 0, so the limit of n
√

n is 1.
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We then prove (iv) and (v) of Theorem 2.4.

Proof. Write a = 1+ p with p > 0. Consider n ∈ N with n > 2k. Then, we have

an = (1+ p)n =
n

∑
k=0

(
n
k

)
pk >

(
n
k

)
pk

where we used the binomial theorem. Upon expansion, the above is equal to

n(n−1) . . .(n− k+1)
k!

· pk >
(n

2

)k
· pk

k!
.

Hence,

0 <
nk

an <
2kk!
pk .

However, the RHS is some constant (independent of n), so similar to our proof of (iii) of Theorem 2.4, we run
into an error. So, we take a detour and consider

an = (1+ p)n =
n

∑
k=0

(
n
k

)
pk >

(
n

k+1

)
pk+1 =

n(n−1) . . .(n− k+1)(n− k)
k!(k+1)

· pk+1 >
(n

2

)k+1
· pk+1

(k+1)!
.

Hence,

0 <
nk

an <
2k+1 (k+1)!

pk+1 · 1
n
.

By the squeeze theorem, the original limit is equal to 0. (v) follows from (iv) by setting k = 0 and a= 1/ |x|.

Example 2.20 (Bartle and Sherbert p. 62 Question 15). Show that

lim
n→∞

(2n)1/n = 1.

Solution. Recall (iii) of Theorem 2.4, where it was mentioned that

lim
n→∞

n1/n = 1.

Hence,
lim
n→∞

(2n)1/n = lim
n→∞

21/n · lim
n→∞

n1/n = 1 ·1 = 1.

□

Example 2.21 (Bartle and Sherbert p. 62 Question 16). Show that

lim
n→∞

n2

n!
= 0.

Solution. We have

lim
n→∞

n2

n!
= lim

n→∞

n2

n(n−1)
· lim

n→∞

1
(n−2)!

= 1 ·0 = 0.

By the squeeze theorem (Theorem 2.3), the result follows. □

Example 2.22 (Bartle and Sherbert p. 62 Question 17). Show that

lim
n→∞

2n

n!
= 0.

Hint: If n ≥ 3, then 0 < 2n

n! ≤ 2
(2

3

)n−2
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Solution. If n ≥ 3, then n! ≥ 3n−2. As such,

0 = lim
n→∞

0 ≤ lim
n→∞

2n

n!
≤ lim

n→∞

2n

3n−2 = 0.

By the squeeze theorem (Theorem 2.3), the result follows. □

Example 2.23 (Bartle and Sherbert p. 70 Question 14). Determine the limits of the following sequences:
(a) lim

n→∞
n1/n2

(b) lim
n→∞

(n!)1/n2

Solution.
(a) Let xn = n1/n2 −1. Then, (xn +1)n2

= n. By the binomial theorem, we have

n2

∑
k=0

(
n2

k

)
xk

n = n so n ≥ 1+n2xn.

As such,

xn ≤
1
n
− 1

n2 which implies lim
n→∞

xn ≤ 0.

As for the lower bound, note that for n ≥ 2, we have xn ≥ 0, so by (iv) of Theorem 2.2,

lim
n→∞

xn ≥ 0.

Combining both inequalities shows that the limit of xn is 0, so the original limit is 1.
(b) We note that for n ≥ 4, we have

n2 ≤ n! ≤ nn

so

lim
n→∞

(
n2)1/n2

≤ lim
n→∞

(n!)1/n2
≤ lim

n→∞
(nn)1/n2

or equivalently
(

lim
n→∞

n1/n2
)2

≤ lim
n→∞

(n!)1/n2
≤ lim

n→∞
n1/n.

By (a), the lower bound is 1 and by (iii) of Theorem 2.4, the upper bound is 1. Hence, by the squeeze
theorem (Theorem 2.3), the desired limit is 1.

Theorem 2.5 (limit theorems). The following hold:
(i) If

lim
n→∞

|xn|= 0 then lim
n→∞

xn = 0.

If c = n, the limit is still the same.
(ii) If

lim
n→∞

xn = L then lim
n→∞

|xn|= |L|.

(iii) Suppose xn ≥ 0 for all n ∈ N. Then,

lim
n→∞

xn = L implies lim
n→∞

√
xn =

√
L.

(iv) If xn ≥ 0 for all n ∈ N and xn converges, then

lim
n→∞

xn ≥ 0.

To see an application/proof of (ii) of Theorem 2.5 as well as its reverse direction, see Example 2.24.

Example 2.24 (Bartle and Sherbert p. 62 Question 8). Prove that

lim
n→∞

xn = 0 if and only if lim
n→∞

|xn|= 0.

Give an example to show that the convergence of {|xn|}n∈N need not imply the convergence of {xn}n∈N.
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Solution. For the first part, we first prove the forward direction. Suppose xn → 0. Then, for every ε > 0, there
exists N ∈ N such that for all n ≥ N, we have |xn|< ε . Since applying the absolute value function twice is the
same as applying it once, the forward direction holds.

For the proof of the reverse direction, suppose |xn| → 0. Then, for all ε > 0, there exists K ∈ N such that
for all n ≥ K, we have ||xn|−0|< ε . Same as the reasoning provided earlier, the reverse direction holds.

For the second part, let xn = (−1)n. Then, {|xn|}n∈N converges because |xn|= 1 which is the constant sequence
1 but by Example 2.15, {xn}n∈N is not convergent. □

Example 2.25 (Bartle and Sherbert p. 70 Question 7). If {bn}n∈N is a bounded sequence and lim
n→∞

an = 0,
show that

lim
n→∞

anbn = 0.

Solution. Since bn is bounded, then for all n ∈ N, there exists M ∈ R such that −M ≤ bn ≤ M. As such,

lim
n→∞

anbn =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
under the assumption that both limits exist

Note that
0 = 0 · (−M)≤

(
lim
n→∞

an

)(
lim
n→∞

bn

)
≤ 0 ·M = 0

so by the squeeze theorem (Theorem 2.3), the result follows. □

Alternatively, we can prove the result in Example 2.25 more formally.

Solution. Since
lim
n→∞

an = 0,

then for every ε,M > 0, there exists N ∈ N such that for all n ≥ N, we have |an| < ε/M. Again, since bn is
bounded, then for all n ∈N, there exists M ∈R+ such that −M ≤ bn ≤ M. So, (−ε/M) ·M ≤ anbn ≤ (ε/M) ·M.
Since ε can be made sufficiently small, by the squeeze theorem (Theorem 2.3), the result follows. □

Example 2.26 (Bartle and Sherbert p. 70 Question 20). Let {xn}n∈N be a sequence of positive real numbers
such that

lim
n→∞

x1/n
n = L < 1.

Show that there exists a number r with 0 < r < 1 such that 0 < xn < rn for all sufficiently large n ∈ N. Use this
to show that

lim
n→∞

xn = 0.

Solution. By the formal definition of a limit, for every ε > 0, there exists N ∈ N such that for all n ≥ N, we
have

∣∣∣x1/n
n −L

∣∣∣< ε . We choose ε = (1−L)/2. Then,

L− 1−L
2

< x1/n
n < L+

1−L
2

so
3L−1

2
< x1/n

n <
L+1

2
.

Raising each side to the power n yields the inequality(
3L−1

2

)n

< xn <

(
L+1

2

)n

.

We can choose r = (L+1)/2. By the squeeze theorem, the result follows. □
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Corollary 2.2. If a,b ∈ R and a ≤ xn ≤ b for all n ∈ N and xn is convergent, then

a ≤ lim
n→∞

xn ≤ b.

Example 2.27. Suppose we wish to evaluate the following limit:

lim
n→∞

2n +3n+1 +5n+2

2n+2 +3n +5n+1

Solution. Recognise that for 0 ≤ a < 1, then an → 0 as n → ∞.

lim
n→∞

2n +3n+1 +5n+2

2n+2 +3n +5n+1 = lim
n→∞

2n +3(3n)+25(5n)

4(2n)+3n +5(5n)

= 5− lim
n→∞

19(2n)+2(3n)

4(2n)+3n +5(5n)

= 5− lim
n→∞

19
(2

5

)n
+2
(3

5

)n

4
(2

5

)n
+
(3

5

)n
+5

= 5

□

Example 2.28 (Bartle and Sherbert p. 70 Question 12). If 0 < a < b, determine

lim
n→∞

an+1 +bn+1

an +bn .

Solution. We have

an+1 +bn+1

an +bn = b · (a/b)n+1 +1
(a/b)n +1

so the limit evaluates to b. □

Example 2.29 (Bartle and Sherbert p. 84 Question 5). Let X = xn and Y = yn be given sequences, and let
the “shuffled” sequence Z = zn be defined by

z1 = x1,z2 = y1, . . . ,z2n−1 = xn,z2n = yn.

Show that
Z is convergent if and only if X and Y are convergent and lim

n→∞
X = lim

n→∞
Y.†

Solution. We first prove the reverse direction. Suppose X and Y are convergent and

lim
n→∞

xn = lim
n→∞

yn = L.

By the definition of a limit of a sequence, there exist N1,N2 ∈ N such that

|xn −L|< ε whenever n ≥ N1 and |yn −L|< ε whenever n ≥ N2.

Set N = max{2N1,2N2}. Then, whenever n ≥ N, |zn −L|< ε and we are done.

Now, we prove the reverse direction. Suppose Z is convergent. That is

lim
n→∞

zn = L.

†Refer to this problem on StackExchange here.

https://math.stackexchange.com/questions/2855081/let-x-n-and-y-n-be-given-sequences-and-define-z-n-to-be-the-shuffle
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By the definition of the limit of a sequence, there exists N ∈ N such that

|zn −L|< ε whenever n ≥ N.

We need to show that
|xn −L|< ε and |yn −L|< ε whenever n ≥ N,

which are
|z2n−1 −L|< ε and |z2n −L|< ε equivalently.

Thus, we need 2n−1 ≥ N and 2n ≥ N, which are obviously true. Hence, the result follows. □

Example 2.30 (MA2108 AY19/20 Sem 1). Let f : (a,∞)→ R be a function such that it is bounded in any
interval (a,b) and

lim
x→∞

( f (x+1)− f (x)) = A.

Prove that

lim
x→∞

f (x)
x

= A.

Solution. Let ε > 0 be arbitrary. By the given limit, there exists M > 0 such that for all x > M,

| f (x+1)− f (x)−A|< ε.

So,
A− ε < f (x+1)− f (x)< A+ ε.

Since f is locally bounded, then for M < x ≤ M+1, −B < f (x)< B for some B ∈ R. Hence,

−B+(A+ ε) · ⌊x−M⌋< f (x)< B+(A+ ε) · ⌈x−M⌉.

Dividing by x on both sides, since ε is made arbitrarily small, by the squeeze theorem, f (x)/x tends to A as
x → ∞. □

Theorem 2.6 (L’Hôpital’s Rule). If f and g are differentiable functions such that g′ (x) ̸= 0 on an open
interval I containing a,

lim
x→a

f (x) = lim
x→a

g(x) =±∞ or lim
x→a

f (x) = lim
x→a

g(x) = 0

and

lim
x→a

f ′ (x)
g′ (x)

exists then lim
x→a

f (x)
g(x)

= lim
x→a

f ′ (x)
g′ (x)

.

Theorem 2.7 (Stolz-Cesàro theorem). Let xn and yn be two sequences of real numbers. If yn is strictly
monotone and divergent and

lim
n→∞

xn+1 − xn

yn+1 − yn
= L exists then lim

n→∞

xn

yn
= L.

We will give a proof of the Stolz-Cesàro theorem (Theorem 2.7) in Example 2.31, where without loss
of generality, we assume that the sequence {bn}n∈N (in place of {yn}n∈N in Theorem 2.7) is monotonically
increasing.

Example 2.31 (MA2108S AY24/25 Sem 2 Tutorial 3; Stolz-Cesàro). Let {an}n∈N ,{bn}n∈N be sequences,
where {bn}n∈N is strictly increasing and divergent. Prove that

lim
n→∞

an+1 −an

bn+1 −bn
= A implies lim

n→∞

an

bn
= A.
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Solution. By the formal definition of a limit, for every ε > 0, there exists N ∈ N such that for all n ≥ N, we
have ∣∣∣∣an+1 −an

bn+1 −bn
−A
∣∣∣∣< ε.

So,

(A− ε)(bn+1 −bn)< an+1 −an < (A+ ε)(bn+1 −bn)

By the method of difference,

k−1

∑
n=N

(A− ε)(bn+1 −bn)<
k−1

∑
n=N

an+1 −an <
k−1

∑
n=N

(A+ ε)(bn+1 −bn)

so

(A− ε)(bk −bN)< ak −aN < (A+ ε)(bk −bN) .

Adding aN to each side yields

(A− ε)(bk −bN)+aN < ak < (A+ ε)(bk −bN)+aN .

For k sufficiently large, we have bk > 1 so 1/bk < 1. As such,

(A− ε)(bk −bN)+aN

bk
<

ak

bk
<

(A+ ε)(bk −bN)+aN

bk
.

So,

(A− ε)

(
1− bN

bk

)
+

aN

bk
<

ak

bk
< (A+ ε)

(
1− bN

bk

)
+

aN

bk
.

Letting k → ∞, we see that ak/bk is sandwiched between A and A, so by the squeeze theorem (Theorem 2.3),
the result follows. □

Theorem 2.8 (Stolz-Cesàro theorem, alt.). If

lim
n→∞

xn = lim
n→∞

yn = 0

where yn is strictly decreasing and

lim
n→∞

xn+1 − xn

yn+1 − yn
= L then lim

n→∞

xn

yn
= L.

Example 2.32 (MA2108 AY19/20 Sem 1). Let an be a sequence in R.
(i) Prove that if

lim
n→∞

an = a then lim
n→∞

a1 +a2 + . . .+an

n
= a.

(ii) Suppose the sequence
a1 +a2 + . . .+an

n

converges. Can we deduce that an converges? Justify your answer.

Solution.
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(i) Let ε > 0 be arbitrary. There exists K1 ∈ N such that |a j −a| ≤ ε/2 for all j ≥ K1. Then,∣∣∣∣a1 +a2 + . . .+an

n
−a
∣∣∣∣=
∣∣∣∣∣1n n

∑
j=1

(a j −a)

∣∣∣∣∣ .
We can bound this sum accordingly. For n ≥ K1,∣∣∣∣∣1n n

∑
j=1

(a j −a)

∣∣∣∣∣≤ 1
n

∣∣∣∣∣ K1

∑
j=1

(a j −a)

∣∣∣∣∣+ 1
n

∣∣∣∣∣ n

∑
j=K1+1

(a j −a)

∣∣∣∣∣ by triangle inequality

≤ 1
n

∣∣∣∣∣ K1

∑
j=1

(a j −a)

∣∣∣∣∣+ n−K1

n
· ε

2

<
1
n

∣∣∣∣∣ K1

∑
j=1

(a j −a)

∣∣∣∣∣+ ε

2

=
C
n
+

ε

2

Here, we let C be the sum of a j −a from j = 1 to j = K1. Next, for K ∈ N, where K > max{K1,2C/ε},
it is now easy to see that ∣∣∣∣∣1n n

∑
j=1

(a j −a)

∣∣∣∣∣< C
n
+

ε

2

≤ C
K
+

ε

2
since n ≥ K

<
ε

2
+

ε

2
since K >

2C
ε

= ε

(ii) No. Define sn = (a1 +a2 + . . .+an)/n. Setting an = (−1)n,

sn =

−1/n if n is odd;

0 if n is even.

By the squeeze theorem, as n → ∞, sn → 0, so it converges. However, an diverges.

2.2
Monotone Sequences

Definition 2.7 (monotone sequence). Let {xn}n∈N be a sequence of real numbers. We say that it is
(i) monotonically increasing if xn ≤ xn+1 for all n ∈ N;

(ii) monotonically decreasing if xn ≥ xn+1 for all n ∈ N

Proposition 2.2. Let F be an ordered field. If F has the least upper bound property, then

every monotone sequence in F is bounded

every monotone increasing sequence in F is bounded above

every monotone decreasing sequence in F is bounded below
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Theorem 2.9 (monotone convergence theorem). Let {xn}n∈N be a monotone sequence. Then,

{xn}n∈N converges if and only if it is bounded.

In particular, if

xn is increasing then lim
n→∞

xn = supxn and if xn is decreasing then lim
n→∞

xn = infxn.

Proof. It suffices to show that if {xn}n∈N is a monotonically increasing sequence in F which is bounded above,
then there exists x ∈ F such that xn → x in F . Let

S = {xn ∈ F : n ∈ N}= {x ∈ F : there exists n ∈ N such that x = pxn}

denote the image set of the sequence {xn}n∈N. Since N ̸= /0, then S ̸= /0. As {xn}n∈N is bounded above, then
S ⊆ F is also bounded above.

By the least upper bound property of F (Definition 1.10), there exists x = supS in F . We claim that xn → x
in F , i.e.

for any ε > 0 there exists N ∈ N such that for all n ≥ N we have |xn − x|< ε.

Since ε > 0, then x− ε ∈ F is not an upper bound of S. So, there exists x′ ∈ S such that x− ε < x′, i.e. there
exists N ∈ N such that x− ε < xN . However, as x = supS is an upper bound of S, then xn ≤ x. As {xn}n∈N is
monotonically increasing, we know that

for all n ≥ N we have xN ≤ xn.

Equivalently, we have x− ε < xn ≤ x, so |x− xn|< ε . We conclude that xn tends to supxn.

Example 2.33 (MA2108S AY16/17 Sem 2 Homework 4). Let x1 = 1 and xn+1 =
√

2+ xn for n ∈ N. Show
that xn converges and find the limit.

Solution. It is clear that xn is bounded above by 2. Given that x1 = 1, we show that xn is strictly increasing.
That is, for n ∈ N, xn+1 > xn.

xn+1 − xn =
√

2+ xn − xn =
2+ xn − x2

n√
2+ xn + xn

=
(xn −2)(xn +1)√

2+ xn + xn
.

It is clear that xn is a sequence of positive terms so we consider the numerator of xn+1 − xn, which is
(2− xn)(xn + 1). For 1 ≤ xn ≤ 2, this product is always positive, and hence xn+1 − xn ≥ 0. By the monotone
convergence theorem (Theorem 2.9), xn converges.

Suppose
lim
n→∞

xn = L.

Then, L =
√

2+L, but since L > 0, then L = 2. □

Example 2.34. Consider the recurrence relation

an+1 =
3+an

1+an
with the initial condition a1 = 3.

Prove that an is a convergent sequence and find its limit.
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Solution. We first prove that
√

3 ≤ an ≤ 3. To show that an ≤ 3, we have

ak+1 =
3+ak

1+ak
≤ 3+3

1+
√

3
by the induction hypothesis

≤ 3

Similarly, we have

ak+1 =
3+ak

1+ak
≥ 3+

√
3

1+3
≥
√

3

where again, the first inequality follows by the induction hypothesis. This shows that an is bounded.

We then prove that an is decreasing using strong induction. We have

ak+1 −ak =
3+ak

1+ak
−ak =

3−a2
k

1+ak
.

It suffices to prove that 3− a2
k ≤ 0 since the denominator 1+ ak > 0. Since

√
3 ≤ ak ≤ 3, then 3 ≤ a2

k ≤ 9 so
3−a2

k ≤ 0. So, an is decreasing. By the monotone convergence theorem, an converges to some limit L. Since

lim
n→∞

an = lim
n→∞

an+1 = L then L =
3+L
1+L

.

So, either L =
√

3 or L = −
√

3. We reject the latter as we earlier established that an is a sequence of positive
numbers (from

√
3 ≤ an ≤ 3) so L = 3. □

Example 2.35 (Bartle and Sherbert p. 70 Question 9). Let

yn =
√

n+1−
√

n for n ∈ N.

Show that {
√

nyn}n∈N converges. Find the limit.

Solution. Let xn =
√

nyn. Then,
xn =

√
n(n+1)−n.

We first prove that {xn}n∈N is bounded, i.e. 0 ≤ xn ≤ 1/2. Proving the lower bound is obvious because it is
equivalent to showing that

n(n+1)≥ n2 or equivalently n ≥ 0.

The aforementioned statement holds trivially. We then justify the upper bound, i.e.√
n(n+1)−n− 1

2
≤ 0 or equivalently n(n+1)≤

(
n+

1
2

)2

.

We have

n2 +n ≤ n2 +n+
1
4

or equivalently
1
4
≥ 0.

Hence, {xn}n∈N is bounded.

Next, we prove that xn is increasing by induction. We have

xk+1 − xk =
√

(k+1)(k+2)− (k+1)−
√

k (k+1)+ k

=
√

k+1
(√

k+2−
√

k
)
−1

=
2
√

k+1−
√

k+2−
√

k√
k+2+

√
k
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As such, it suffices to prove that 2
√

k+1−
√

k+2−
√

k ≥ 0. To see why this holds, define zk =
√

k+1−
√

k.
Then, the mentioned inequality is equivalent to zk −zk+1 ≥ 0, or zk+1 ≤ zk. As it is known that zk is a decreasing
sequence, then xk+1 ≥ xk, i.e. xn is increasing. By the monotone convergence theorem (Theorem 2.9), {xn}n∈N
converges.

Hence,

lim
n→∞

xn = lim
n→∞

n(n+1)−n2√
n(n+1)+n

= lim
n→∞

n√
n2 +n+n

= lim
n→∞

1√
1+1/n+1

=
1
2
.

□

Example 2.36 (Bartle and Sherbert p. 77 Question 2). Let x1 > 1 and

xn+1 = 2− 1
xn

for n ∈ N.

Show that {xn}n∈N is bounded and monotone. Find the limit.

Solution. We first prove that {xn}n∈N is bounded. We claim that xn > 1 for all n ∈ N. The base case holds
trivially. Assume that xk > 1 for some k ∈ N. Then, −1/xk > −1 so xk+1 > 1. As such, {xn}n∈N is bounded
below by induction.

We then prove that {xn}n∈N is monotonically decreasing. Assume that xk+1 − xk ≤ 0 for all k ≤ n−1. Then,

xn+1 − xn = 2− 1
xn

− xn =
2xn − x2

n −1
xn

=−(xn −1)2

xn
.

Since xn is a sequence of positive numbers (we deduce that xn is bounded below by 1 earlier), then xn+1−xn < 0,
so xn+1 < xn. By induction, {xn}n∈N is monotonically decreasing. Hence, {xn}n∈N converges. Suppose the limit
is L. Then,

L = 2− 1
L
.

Hence, L = 1. □

Example 2.37 (Bartle and Sherbert p. 77 Question 3). Let x1 ≥ 2 and xn+1 = 1+
√

xn −1 for n ∈N. Show
that {xn}n∈N is decreasing and bounded below by 2. Find the limit.

Solution. We first show that {xn}n∈N is bounded below by 2. We have

xn+1 = 1+
√

xn −1 ≥ 1+
√

2−1 = 2

so by induction, {xn}n∈N is bounded below. We then prove that {xn}n∈N is decreasing. We have

xn+1 − xn = 1+
√

xn −1− xn =
√

xn −1
(

1−
√

xn −1
)
.

Since
√

xn −1 ≥ 1, then it follows that xn+1 −xn < 0, i.e. {xn}n∈N is decreasing. By the monotone convergence
theorem, {xn}n∈N converges. Suppose the limit is L. Then, L = 1+

√
L−1. As such, L = 2. □

Example 2.38 (Bartle and Sherbert p. 77 Question 6). Let a > 0 and let z1 > 0. Define

zn+1 =
√

a+ zn for n ∈ N.

Show that {zn}n∈N converges and find the limit.
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Solution. We first observe that {zn}n∈N is a positive sequence of numbers. Consider the equation L =
√

a+L,
which yields L2 −L−a = 0. The positive root of this quadratic equation is

r =
1+

√
1+4a
2

.

As such, we shall consider three cases as follows:
(i) z1 < r

(ii) z1 = r
(iii) z1 > r

For (i), if z1 < r, then we claim that {zn}n∈N is increasing and bounded above by r. We first prove the latter by
induction. The base case holds trivially as we earlier mentioned that z1 < r. Suppose zk < r for some k ∈ N.
Then,

zk+1 =
√

a+ zk ≤
√

a+ r = r.

The last equality holds because it is equivalent to r2 − r − a = 0. As mentioned, r is a root of the quadratic
equation L2 −L−a = 0, so indeed

√
a+ r = r. As such, {zn}n∈N is bounded above.

We then prove that {zn}n∈N is increasing. We have

zn+1 − zn =
√

a+ zn − zn =
(
√

a+ zn − zn)(
√

a+ zn + zn)√
a+ zn + zn

=
a+ zn − z2

n√
a+ zn + zn

=− z2
n − zn −a√
a+ zn + zn

.

By considering the denominator, as zn is a positive sequence of numbers, then
√

a+ zn,zn > 0 so it suffices to
prove that z2

n − zn −a < 0. Let

r′ =
−1−

√
1+4a

2
be the negative root of the quadratic equation L2 −L−a = 0.

Then, the solution to the quadratic inequality z2
n−zn−a< 0 is r′ < zn < r. As we earlier deduced that 0< zn < r,

then zn < r holds so zn+1 − zn > 0, i.e. {zn}n∈N is increasing. By the monotone convergence theorem, {zn}n∈N
converges.

For (ii), we have the constant sequence zn =
√

a+ r so {zn}n∈N converges.

Lastly, for (iii), if z1 > r, we claim that {zn}n∈N is decreasing and bounded below by r. We first prove the
latter by induction. Again, the base case holds trivially as we earlier mentioned that z1 > r. Suppose zk > r for
some k ∈ N. Then,

zk+1 =
√

a+ zk ≥
√

a+ r = r.

Again, the last equality holds due to the same argument made previously, i.e. r is the positive root of the
quadratic equation L2 −L−a = 0. As such, {zn}n∈N is bounded below.

We then prove that {zn}n∈N is decreasing. We have

zn+1 − zn =− z2
n − zn −a√
a+ zn + zn

.

Again, it suffices to consider the numerator z2
n − zn −a. We wish to prove that it is positive. The solution to the

quadratic inequality z2
n − zn −a > 0 is zn > r or zn <−r′. As we earlier deduced that zn > r, then it follows that

{zn}n∈N is decreasing. By the monotone convergence theorem, {zn}n∈N converges.
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As mentioned, the limit is r, which is equal to

1+
√

1+4a
2

.

We chose the positive root here because {zn}n∈N is a positive sequence of numbers. □

Example 2.39 (Bartle and Sherbert p. 77 Question 7). Let x1 = a > 0 and

xn+1 = xn +
1
xn

for n ∈ N.

Determine whether {xn}n∈N converges or diverges.

Solution. We have

x2
n+1 = x2

n +
1
x2

n
+2 so x2

n+1 − x2
n = 2+

1
x2

n
> 2.

By the method of difference, x2
N − x2

1 > 2(N −1) so

xN >
√

a+2N −2.

Hence, xN → ∞ as N → ∞, which implies {xn}n∈N diverges. □

Example 2.40 (Bartle and Sherbert p. 77 Question 10). Establish the convergence or the divergence of the
sequence (yn), where

yn =
1

n+1
+

1
n+2

+ . . .+
1

2n
for n ∈ N.

Solution. We first prove that {yn}n∈N is bounded. We have

1
2
≤ 1

2n
+

1
2n

+ . . .+
1
2n︸ ︷︷ ︸

n copies

≤ 1
n+1

+
1

n+2
+ . . .+

1
2n

≤ 1
n
+

1
n
+ . . .+

1
n︸ ︷︷ ︸

n copies

= 1

so 1/2 ≤ yn ≤ 1 for all n ∈ N. This shows that {yn}n∈N is bounded.

We then prove that {yn}n∈N is increasing. We have

yn+1 − yn =

(
1

n+1
+ . . .+

1
2n

+
1

2n+1
+

1
2n+2

)
−
(

1
n+1

+ . . .+
1
2n

)
=

1
2n+1

+
1

2n+2
> 0

so {yn}n∈N is increasing. By the monotone convergence theorem, {yn}n∈N converges. □

Example 2.41 (Bartle and Sherbert p. 77 Question 11). Let

xn =
1
12 +

1
22 + . . .+

1
n2 for each n ∈ N

Show that {xn}n∈N converges.

Solution. We first show that {xn}n∈N is increasing. We have

xn+1 − xn =
1

(n+1)2 > 0

so xn+1 > xn, so {xn}n∈N is increasing.
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Next, we show that {xn}n∈N. We use the fact k2 ≥ k (k−1) for k ≥ 2 so

1
k2 ≤ 1

k (k−1)
.

As such,

xn =
n

∑
k=1

1
k2 = 1+

n

∑
k=2

1
k2 ≤ 1+

n

∑
k=2

1
k (k−1)

≤ 2

where the last inequality uses the method of difference. By the monotone convergence theorem (Theorem 2.9),
{xn}n∈N converges. □

Example 2.42 (Bartle and Sherbert p. 70 Question 18). Let X = {xn}n∈N be a sequence of positive real
numbers such that

lim
n→∞

xn+1

xn
= L > 1.

Show that X is not a bounded sequence and hence is not convergent.

Solution. By the formal definition of a limit, for every ε > 0, there exists N ∈ N such that for all n ≥ N, we
have ∣∣∣∣xn+1

xn
−L
∣∣∣∣< ε.

So,

L− ε <
xn+1

xn
< L+ ε.

Hence,
xn+1 > (L− ε)xn > (L− ε)2 xn−1 > .. . > (L− ε)n−N+1 xN .

As n → ∞, then it shows that xn is not bounded above. As such X is not a bounded sequence. By the monotone
convergence theorem (Theorem 2.9), X is not a convergent sequence. □

Example 2.43 (Bartle and Sherbert p. 70 Question 22). Suppose that {xn}n∈N is a convergent sequence
and {yn}n∈N is such that for any ε > 0, there exists M such that |xn − yn|< ε for all n ≥ M. Does it follow that
{yn}n∈N is convergent?

Solution. Yes. Let ε ′ = 2ε (which is > 0) be arbitrary. Since {xn}n∈N is convergent, then for every ε > 0,
there exists N ∈ N such that for all n ≥ N, we have |xn −L| < ε , where L is the limit of xn. As such, choose
K = max{N,M}. Then, for all n ≥ K, we have

|yn −L|= |yn − xn + xn −L|
≤ |yn − xn|+ |xn −L| by the triangle inequality

< ε + ε

= ε
′

So, {yn}n∈N is also a convergent sequence. □

Example 2.44 (Bartle and Sherbert p. 84 Question 11). Suppose

xn ≥ 0 for all n ∈ N and lim
n→∞

(−1)n xn exists.

Show that {xn}n∈N converges.
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Solution. Since the aforementioned limit, say L, exists, then for every ε > 0, there exists N ∈ N such that for
all n ≥ N, we have

|(−1)n xn −L|< ε.

So,

L− ε < (−1)n xn < L+ ε.

Since this inequality holds for all n ∈N, suppose n is even. Then, there exists k ∈N such that n = 2k. Moreover,
as ε > 0 can be made arbitrarily small, we can choose ε = 1, so

L−1 < x2k < L+1.

On the other hand, suppose n is odd. Then, there exists k ∈ N such that n = 2k+1. So,

L−1 <−x2k+1 < L+1.

As k → ∞, by the squeeze theorem, we see that

lim
k→∞

x2k = L.

Similarly, by the squeeze theorem,

lim
k→∞

x2k+1 =−L.

Since xn ≥ 0 for all n ∈N, then L ≥ 0 and −L ≥ 0, which forces L = 0. So, xn → 0, i.e. {xn}n∈N converges. □

Example 2.45. Let f : [a,b]→ [a,b] be a non-decreasing and continuous map on a closed interval such that
f (x) = x has no solution in (a,b). Prove that either f (a) = a or f (b) = b. Such a point is said to be fixed under
f . Furthermore, for every point c ∈ (a,b), we may define the sequence a0 = c and an+1 = f (an). For such a
sequence, prove that {an}n∈N is monotonic and converges to that fixed point.
Hint: Draw a graph to get an idea, then provide rigorous proof. You will need the intermediate value theorem.

Solution. Define g(x) = f (x)−x. Since f is continuous on [a,b], then the same can be said for g. We will prove
the contrapositive instead. Suppose neither f (a) = a nor f (b) = b. Then, g(a) ̸= 0 and g(b) ̸= 0. Also, note
that f (a)≥ a and f (b)≤ b (since f is non-decreasing). As such, g(a)≥ 0 and g(b)≤ 0. By the intermediate
value theorem, there exists c ∈ (a,b) such that g(c) = 0, so f (c) = c, proving the first part.

For the second part, consider the case when f (x)< x for all x ∈ (a,b). In particular, f (c)< c, where c ∈ (a,b).
By induction, one can show that an+1 −an = f (an)−an < 0, i.e. {an}n∈N is decreasing. Since a < c < b, then
the sequence is bounded below by a, so by the monotone convergence theorem, the sequence converges to the
fixed point a. The case where f (x)> x is argued similarly. □

Methods of computing square roots are numerical analysis algorithms for approximating the principal, or
non-negative, square root of a real number, say S.

Theorem 2.10 (Babylonian method). We start with an initial value somewhere near
√

S. That is x0 ≈√
S. We then use the following recurrence relation to find a better estimate for

√
S:

xn+1 =
1
2

(
xn +

S
xn

)
where lim

n→∞
xn =

√
S
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Proof. Suppose

lim
n→∞

xn = L.

Substituting this into the recurrence relation yields

L =
1
2

(
L+

S
L

)
.

Rearranging and the result follows.

Theorem 2.11 (nested interval theorem). Let In = [an,bn], where n ∈ N, be a nested sequence of
closed and bounded sequences. That is, In ⊇ In+1. Then, the intersection

∞⋂
n=1

In = {x : x ∈ In for all n ∈ N}

is non-empty. In addition, if bn − an → 0 (i.e. length of In tends to 0), then the intersection contains
exactly one point.

Definition 2.8 (harmonic numbers). The harmonic numbers, Hn, are defined to be

n

∑
k=1

1
k
.

Definition 2.9 (harmonic series). The harmonic series is defined to be the following sum:

∞

∑
n=1

1
n
= lim

n→∞
Hn

Note that the harmonic numbers are increasing (since Hn+1 −Hn > 0) and

lim
n→∞

Hn = 0.

However, the harmonic series is divergent! Another interesting property is that other than H1, the harmonic
numbers are never integers, whose proof hinges on some elementary Number Theory.

2.3
Euler’s Number, e

Definition 2.10 (Euler’s number). Euler’s number, e ≈ 2.71828, is defined to be

lim
n→∞

(
1+

1
n

)n

.

Theorem 2.12. The sequence

xn =

(
1+

1
n

)n

is strictly increasing.

That is, xn+1 > xn for all n ∈ N.
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Proof. It is easier to prove xn > xn−1, so we wish to prove(
1+

1
n

)n

>

(
1+

1
n−1

)n−1

.

First, we write 1+1/n as

1+
1

n−1
=

n
n−1

=
1

1−1/n
.

Hence,

(1+1/n)n

(1+1/(n−1))n−1 =

(
1+

1
n

)n(
1− 1

n

)n−1

=

(
1+

1
n

)n(
1− 1

n

)n(
1− 1

n

)−1

=

(
1− 1

n2

)n(
1− 1

n

)−1

By Bernoulli’s inequality (Theorem 1.5), this is greater than 1, and so xn > xn−1.

Theorem 2.13. 2 ≤ e ≤ 3

Proof. We use the series expansion of xn.(
1+

1
n

)n

= 1+n
(

1
n

)
+

n(n−1)
2!

(
1
n

)2

+ . . .+
n(n−1)(n−2)

3!

(
1
n

)3

= 1+1+
n−1
(2!)n

+
(n−1)(n−2)

3!(n2)
+ . . .

It is clear that e ≥ 2. To prove that e ≤ 3, we consider the infinite series, but starting from the third term of the
expansion of xn. It suffices to show that

n−1
2n

+
(n−1)(n−2)

6n2 +
(n−1)(n−2)(n−3)

24n3 + . . .≤ 1.

Observe that the rth term can be written as

(n−1)(n−2)(n−3) . . .(n− r)
(r+1)!nr =

1
(r+1)!

(
1− 1

n

)(
1− 2

n

)(
1− 3

n

)
. . .
(

1− r
n

)
≤ 1

(r+1)!
.

It is clear that
1

(r+1)!
≤ 1

2r ,

since the factorial grows much faster than the geometric series, and so taking the reciprocal, the result follows.
To conclude,

∞

∑
r=1

(n−1)(n−2)(n−3) . . .(n− r)
(r+1)!nr ≤

∞

∑
r=1

1
2r = 1,

and we are done.

Though the incredible constant is named after the Swiss mathematician Leonhard Euler, its discovery is
actually accredited to another Swiss mathematician, Jacob Bernoulli. Just like π , e is also irrational (Theorem
2.14), which can be proven by contradiction.

Theorem 2.14. e is irrational
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Proof. Suppose on the contrary that e is rational. Then, there exist p,q ∈ Z with q ̸= 0 such that e = p/q. As e
can be expressed as the following infinite series

∞

∑
k=0

1
k!
,

we have

e =
p
q
=

1
0!

+
1
1!

+
1
2!

+
1
3!

+
1
4!

+ . . .+
1

m!
+

1
(m+1)!

+ . . .

m!e =
m!
0!

+
m!
1!

+
m!
2!

+
m!
3!

+
m!
4!

+ . . .+
m!
m!

+
m!

(m+1)!
+ . . .

By setting q = m!, we see that m!e ∈ Z. Next, we take a look at the RHS. Observe that

m!
0!

+
m!
1!

+
m!
2!

+
m!
3!

+
m!
4!

+ . . .+
m!
m!

is an integer but

m!
(m+1)!

+
m!

(m+2)!
+

m!
(m+3)!

+ . . .=
1

m+1
+

1
(m+1)(m+2)

+
1

(m+1)(m+2)(m+3)
+ . . .

is not an integer, which is a contradiction.

2.4
The Euler-Mascheroni Constant, γ

Definition 2.11 (Euler-Mascheroni constant). The Euler-Mascheroni constant, γ ≈ 0.5772, is the
limiting difference between the harmonic series and the natural logarithm. That is,

γ = lim
n→∞

(
n

∑
k=1

1
k
− lnn

)
.

γ is an epic constant. From Figure 9, the Euler-Mascheroni constant can be regarded as the sum of areas of
the yellow rectangles minus the area under the curve y = 1/x for x ≥ 1.

x

y

Figure 9: The graph of y = 1/x and an approximation for the area under the curve

It is interesting to note that the Euler-Mascheroni constant converges even though the harmonic series diverges
and lnn tends to infinity as n tends to infinity. Let us prove this result using the monotone convergence theorem.

Lemma 2.1. Let xn be the following sequence:

xn =
n

∑
k=1

1
k
− lnn
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Then, the following properties hold:
(i) xn is a decreasing sequence.

(ii) 0 < xn ≤ 1, i.e. xn is bounded.

Proof. We first prove (i), i.e. xn > xn+1. Consider

xn − xn+1 =
n

∑
k=1

1
k
− lnn−

n+1

∑
k=1

1
k
+ ln(n+1) = ln

(
n+1

n

)
− 1

n+1
.

Consider the graph of f (x) = 1/x, for n ≤ x ≤ n+1. We can regard

ln((n+1)/n) as the area under the curve from x = n to x = n+1 and

1/(n+1) as the area of a rectangle bounded by x = n,x = n+1 and y = 1/n

Since f is strictly decreasing and concave up, then the area under the curve is less than the area of the rectangle.
Hence, xn − xn+1 > 0 and the result follows.

We then prove that 0 < xn ≤ 1, i.e. xn is bounded. Note that x1 = 1. Since xn is a strictly decreasing sequence,
then

1 = x1 > x2 > x3 > .. .

and so xn is bounded above by 1.

Write xn as
n

∑
k=1

1
k
−
∫ n

1

1
x

dx.

Construct a rectangle of width 1 and height 1/n (taking the left endpoint) and note that the sum of areas of the
rectangles is strictly greater than the area under the curve, so xn > 0 since the graph of f is strictly decreasing
and concave up.

With the two facts established in Lemma 2.1, by the monotone convergence theorem (Theorem 2.9), xn

converges, and it converges to γ . It is still unknown whether γ is rational or irrational. This remains an open
problem.

Example 2.46 (MA2108 AY21/22 Sem 1 Midterm).
(i) Let n ∈ N. Prove that

1
n+1

< ln
(

1+
1
n

)
<

1
n
.

(ii) Use the above inequalities to prove that

xn = 1+
1
2
+

1
3
+ . . .+

1
n
− lnn

has a limit as n → ∞.

Solution.
(i) Let

f (n) =
1

n+1
, g(n) = ln

(
1+

1
n

)
and h(n) =

1
n
.

Note that f ,g and h are concave up on (0,∞). If we establish that f ′(n)> g′(n)> h′(n) for all n ∈ (0,∞),
then we are done.
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Consider

g′ (n)− f ′ (n)=
1

(n+1)2 −
1

n2 +n
=− 1

n(n+1)2

and since n > 0, then g′(n)< f ′(n).

Next, consider

g′ (n)−h′ (n) =− 1
n2 +n

+
1
n2 =

1
n2 (n+1)

and in a similar fashion, g′(n)> h′(n). We are done.
(ii) It suffices to show that xn is decreasing and bounded.

To show xn is decreasing, consider

xn − xn+1 =− 1
n+1

+ ln
(

1+
1
n

)
> 0

by (i).

To show xn is bounded, note that x1 = 1. Since xn is a strictly decreasing sequence, then

1 = x1 > x2 > x3 > .. .

and so xn is bounded above by 1.

Write xn as
n

∑
k=1

1
k
−
∫ n

1

1
x

dx.

Construct a rectangle of width 1 and height 1/n (taking the left endpoint) and note that the sum of areas
of the rectangles is strictly greater than the area under the curve, so xn > 0 since the graph of f is strictly
decreasing and concave up.

Since xn is decreasing and between 0 and 1, its limit exists.

2.5
Subsequences

Definition 2.12 (subsequence). Let {xn}n∈N be a sequence in R, i.e. a map

x : N→ X where n 7→ xn.

A subsequence of {xn}n∈N is a sequence of the form {xnk}k∈N, where the indices nk form a strictly
increasing sequence of natural numbers, i.e. n1 < n2 < .. .. Formally, it can be seen as the composition
of the following two maps:

N k−→ N x−→ R where k 7→ nk 7→ xnk

Lemma 2.2. We have

{xn}n∈N converges in R if and only if every subsequence of {xn}n∈N converges in R.



MA2108 MATHEMATICAL ANALYSIS I Page 60 of 148

Proof. We first prove the reverse direction. Then, {xn}n∈N as a subsequence of itself must converge in R, i.e.
consider N→ N where i 7→ i is strictly increasing.

For the forward direction, suppose xn → x in R and we have {xnk}k∈N as a subsequence. Then, for all ε > 0,
there exists N ∈ N such that for all n ≥ N, we have |xn − x|< ε . Since k 7→ nk is strictly increasing, then for all
k ≥ N, we have nk ≥ N, so |xnk − x|< ε .

Corollary 2.3. If {xn}n∈N has two convergent subsequences with distinct limits, then {xn}n∈N is
divergent.

Theorem 2.15 (existence of monotone subsequences). Let {xn}n∈N be a sequence in R. Then, there
exists a subsequence {xnk}k∈N which is monotone.

Proof. For any k ∈ N, we say that

{xn}n∈N has a peak at k if and only if for all n ≥ k we have xk ≥ xn.

Let

S =
{

k ∈ N : {xn}n∈N has a peak at k
}
= {k ∈ N : xk ≥ xn for all n ≥ k} ⊆ N.

Then, either

{xn}n∈N has infinitely many peaks i.e. S is infinite or

{xn}n∈N has finitely many peaks i.e. S is finite

For the first case, suppose {xn}n∈N has infinitely many peaks. Define the map h : N→N recursively as follows.
Set n1 = 1. Given i ∈ N such that ni has been defined, set

n to be the smallest element of the set
{

k ∈ N : k > ni and {xn}n∈N has a peak at k
}

This set is S \ {1, . . . ,ni}. As S is an infinite set and {1, . . . ,ni} is a finite set, then S \ {1, . . . ,ni} is an infinite
set, which is non-empty.

By induction, for all i ∈ N, we have ni+1 > ni in N. So, for all i, j ∈ N such that i < j, we have ni < n j in
N and xni ≥ xn j in R. We conclude that {xnk}k∈N is a monotonically decreasing subsequence of {xn}n∈N.

For the second case, suppose {xn}n∈N has finitely many peaks. Then, there exists N ∈ N such that for all
k ≥ N, {xn}n∈N has a peak at k, i.e. S ⊆ {1, . . . ,N}. Define a subsequence {xnk}k∈N} recursively as follows: set
n1 = N +1. Given ni, choose ni+1 to be the smallest index m > nk such that xm > xnk . Such an m always exists
by the non-peak property of indices greater than N. This ensures that {xnk} is strictly increasing.

Theorem 2.16 (Bolzano-Weierstrass theorem). Every bounded sequence has a convergent subse-
quence.

Example 2.47 (MA2108S AY16/17 Sem 2 Homework 4). Suppose that every subsequence of xn has a
subsequence that converges to 0. Show that

lim
n→∞

xn = 0.†

†This also appears in MA2108 AY24/25 Sem 2 Problem Set 2 Question 32.
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Solution. We first show that xn is bounded‡. Suppose on the contrary that it is not. Then, for every M,N > 0,
there exists n ≥ N such that |xn| ≥ M. Then, we can find a subsequence xnk such that

lim
k→∞

xnk = ∞.

However, this subsequence does not have a subsequence that converges to 0, which is a contradiction. Hence,
xn is bounded.

Next, xn must have only one limit point. Let L be a limit point of xn. Then, xnk converges to L. Also, any
subsequence of xnk converges to L. By the uniqueness of the limit, as every subsequence of xnk converges to 0,
then xnk converges to 0, we establish the required result. □

Here is an alternative solution.

Solution. Suppose on the contrary that {xn}n∈N does not converge to 0. Then, there exists ε > 0 such that for
all k ∈ N, there exists nk ≥ k such that

|xnk | ≥ ε.

Let
{

xnkℓ

}
ℓ∈N

be a subsequence of {xnk}k∈N. Then, for every k ∈ N, we have
∣∣∣xnkℓ

∣∣∣ ≥ ε , i.e. there exists

a subsequence of {xnk}k∈N that does not converge to 0, contradicting the hypothesis that {xn}n∈N does not
converge to 0. □

Example 2.48 (MA2108S AY16/17 Sem 2 Homework 4). Let {xn}n∈N be a bounded sequence and for each
n ∈ N, let

sn = sup{xk : k ≥ n} and S = inf{sn} .

Show that there exists a subsequence of {xn}n∈N that converges to S†.

Solution. In Example 1.33, we proved that if A ⊆ B, where A ̸= /0, then supA ≤ supB. From here, we claim that
{sn}n∈N is monotonically decreasing. We have

sn+1 − sn = sup{xk : k ≥ n+1}− sup{xk : k ≥ n}
= sup{xn+1,xn+2, . . .}− sup{xn,xn+1,xn+2, . . .}

If xn = sup{xn+1,xn+2, . . .}, then sn+1−sn = 0. On the other hand, if xn ≥ sup{xn+1,xn+2, . . .}, then sn+1−sn ≤
0, i.e. {sn}n∈N is decreasing. As {xn}n∈N is bounded, then {sn}n∈N is also bounded. By the monotone
convergence theorem (Theorem 2.9), {sn}n∈N converges. In particular, as {sn}n∈N is bounded below and
decreasing, then {sn}n∈N converges to the infimum. □

Example 2.49 (Bartle and Sherbert p. 84 Question 12). Show that if {xn}n∈N is unbounded, then there
exists a subsequence {xnk}k∈N such that

lim
k→∞

1
xnk

= 0

Solution. Without loss of generality, suppose {xn}n∈N is not bounded above. Then, for all M ∈ R, there exists
n ∈ N such that for all n ≥ N, we have xn > M. Take some subsequence {xnk}k∈N, so for each k ∈ N, choose nk

such that
xnk > k and n1 < n2 < .. . < nk.

Hence,

0 <
1

xnk

<
1
k
.

As k → ∞, by the squeeze theorem, the result follows. □
‡See here for a reference.
†Also appears in MA2108 AY24/25 Sem 2 Problem Set 2 Question 33.

https://math.stackexchange.com/questions/2186408/suppose-that-every-subsequence-of-x-x-n-has-a-subsequence-converge-to-0-sh
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Example 2.50 (Bartle and Sherbert p. 85 Question 14). Let {xn}n∈N be a bounded sequence and let s =
sup{xn : n ∈ N}. Show that if s /∈ {xn : n ∈ N}, then there is a subsequence of {xn}n∈N that converges to s.

Solution. By definition of supremum, we know that for every ε > 0, there exists xn such that

s− ε < xn < s where s = sup{xn : n ∈ N} .

Choose ε = 1 so

there exists xn1 such that s−1 < xn < s.

Similarly, choose ε = 1/2 so

there exists xn2 such that s− 1
2
< xn2 < s.

As such, we obtain an increasing subsequence {xnk}k∈N such that

s− 1
k
< xnk < s.

Letting k tend to infinity, we have

lim
k→∞

(
s− 1

k

)
< lim

k→∞

xnk < lim
k→∞

s.

By the squeeze theorem, the subsequence {xnk}k∈N converges to s. □

2.6
Cauchy Sequences

Definition 2.13 (Cauchy sequence). Let F be an ordered field A sequence {xn}n∈N is Cauchy if

for every ε > 0 there exists N ∈ N such that for all m,n ≥ N we have |xm − xn|< ε.

Intuitively, what Definition 2.13 means is that for large n, the xn’s are very close to each other. For instance,
the sequence {1/n}n∈N is obviously Cauchy. To see why, we consider Figure 10, whereby for some N ∈ N, the
distance between xm and xn is sufficiently small (to be precise, this distance is at most ε , but not including it).
Here, we have constructed an open ball† which contains xn and xm, where the distance between xm and xn is
strictly contained in this ball!

xn =
1
n0

x1x2xn xm

ε

Figure 10: If xn = 1/n, then the sequence {xn}n∈N is Cauchy

Theorem 2.17 (convergent implies Cauchy). Let F be an ordered field. If {xn}n∈N is convergent in F ,
then it is Cauchy.

†Do not need to care too much what ‘open ball’ means for now. Loosely speaking, you can regard it as an open interval, but this notion
applies to arbitrary topological spaces.
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Proof. Suppose {xn}inN is convergent in F , i.e. xn → x in F . Given ε > 0, there exists N ∈ N such that for all
n ≥ N, we have

|xn − x|< ε

2
.

So, for all m,n ≥ N, we have

|pn − pm|= |(pn − p)− (pm − p)|
≤ |pn − p|+ |pm − p| by the triangle inequality

<
ε

2
+

ε

2

which is bounded above by ε . This shows that {xn}n∈N is Cauchy.

We take a look Examples 2.51 and 2.52 for an application of Theorem 2.17.

Example 2.51. Let xn = n. Then, {xn}n∈N is not convergent, so it is not Cauchy.

Example 2.52. Let

yn =
1
2n and zn =

1
n2 .

Note that {yn}n∈N is a geometric sequence with a common ratio of 1/2 so it is convergent. As such, it is Cauchy.
In fact, we can prove that {yn}n∈N is Cauchy by directly applying Definition 2.13. Let ε > 0 be arbitrary. Choose
N =

⌈
1− lnε

ln2

⌉
in N. Then, for all m ≥ n ≥ N we have

|ym − yn|=
∣∣∣∣ 1
2m − 1

2n

∣∣∣∣= |2n −2m|
2m+n ≤ 2m+1

2m+n = 21−n ≤ 21−N < ε.

Moreover, {zn}n∈N is convergent, so it is Cauchy.

Remark 2.2. The converse of Theorem 2.17 is not true, i.e. if we are given a Cauchy sequence {xn}n∈N
in an ordered field F , then it may not converge to some element in F . Take for example F = Q and a
sequence of positive rational numbers that converge to

√
2.

Example 2.53 (Bartle and Sherbert p. 91 Question 2). Show directly from the definition that the following
are Cauchy sequences:

(a) n+1
n

(b) 1+ 1
2! + · · ·+ 1

n!

Solution.

(a) Let

xn =
n+1

n
.

Then, let ε > 0 be arbitrary. Choose N = ⌈1/ε⌉ in N. Then, for m,n ∈ N sufficiently large such that
m ≥ n ≥ N, we have

|xm − xn|=
∣∣∣∣m+1

m
− n+1

n

∣∣∣∣= ∣∣∣∣m−n
mn

∣∣∣∣≤ ∣∣∣ m
mn

∣∣∣= 1
|n|

≤ 1
N

< ε.

(b) Let

xn = 1+
1
2!

+ . . .+
1
n!
.
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Then, let ε > 0 be arbitrary. Choose N = ⌈1/ε⌉ in N. Then, for m,n ∈ N sufficiently large such that
m,n ≥ N, we have

|xm − xn|=
∣∣∣∣(1+

1
2!

+ . . .+
1
n!

+
1

(n+1)!
+ . . .+

1
m!

)
−
(

1+
1
2!

+ . . .+
1
n!

)∣∣∣∣
=

∣∣∣∣ 1
(n+1)!

+ . . .+
1

m!

∣∣∣∣
≤ 1

n!
+ . . .+

1
n!︸ ︷︷ ︸

m−n times

since (n+1)!, . . . ,m! ≥ n!

=
m−n

n!

≤ m−n
mn

≤ m
mn

=
1
n
< ε

so {xn}n∈N is a Cauchy sequence.

Example 2.54 (Bartle and Sherbert p. 91 Question 3). Show directly from the definition that the following
are not Cauchy sequences:

(a) (−1)n

(b) n+ (−1)n

n
(c) lnn

Solution.
(a) Let xn = (−1)n. Choose ε = 1. Then, consider

|xn+1 − xn|=
∣∣∣(−1)n+1 − (−1)n

∣∣∣= |(−1)n| |−1−1|= 2 > 1 = ε,

so {xn}n∈N is not a Cauchy sequence.
(b) Let

xn = n+
(−1)n

n
.

Choose ε = 1. Then, consider

|xn+1 − xn|=

∣∣∣∣∣n+1+
(−1)n+1

n+1
−n− (−1)n

n

∣∣∣∣∣=
∣∣∣∣∣1+ (−1)n+1

n+1
− (−1)n

n

∣∣∣∣∣ .
By the reverse triangle inequality,

|xn+1 − xn| ≥ 1−

∣∣∣∣∣(−1)n+1

n+1
− (−1)n

n

∣∣∣∣∣
so {xn}n∈N is not a Cauchy sequence.

(c) Let xn = lnn. Choose ε = 1
2 . Then, consider

|x2n − xn|= ln2 > 0.5 = ε,

so {xn}n∈N is not a Cauchy sequence.

Example 2.55 (Bartle and Sherbert p. 91 Question 5). If xn =
√

n, show that {xn}n∈N satisfies

lim
n→∞

|xn+1 − xn|= 0 but that it is not a Cauchy sequence.
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Solution. We have

lim
n→∞

|xn+1 − xn|= lim
n→∞

∣∣∣√n+1−
√

n
∣∣∣= lim

n→∞

1√
n+1+

√
n
= 0.

However, we claim that {xn}n∈N is not a Cauchy sequence. Consider

|x2n − xn|=
√

2n−
√

n =
n√

2n+
√

n
=

√
n

1+
√

2

which grows without bound. The result follows. □

Theorem 2.18 (Cauchy implies bounded). Let F be an ordered field. If {xn}n∈N is a Cauchy sequence
in F , then it is bounded.

Proof. Since {xn}n∈N is Cauchy, then for all ε > 0, there exists N ∈ N such that for all m,n ≥ N, we have
|xm − xn|< ε . In particular, we can choose ε = 1. Set M = max{|x1| , . . . , |xN |}+1.

Consider any n ∈ N. If n ≤ N, then we have |xn| ≤ M. On the other hand, if n ≥ N, then

|xn|= |xn − xN + xN |
≤ |xn − xN |+ |xN | by the triangle inequality

< 1+ |xN | ≤ M

This shows that {xn}n∈N is bounded.

Proposition 2.3. Let F be an ordered field and {xn}n∈N be a Cauchy sequence in F . If

there exists a subsequence of {xn}n∈N that converges in F then {xn}n∈N also converges in F.

In fact, both limits would be the same.

Proof. Suppose {xnk}k∈N is a subsequence of {xn}n∈N and xnk → x in F . Given ε > 0, there exists N ∈ N such
that for all k ≥ N, we have

|xnk − x|< ε

2
.

Since {xn}n∈N is a Cauchy sequence, then there exists M ∈ N such that for all m,n ∈ N, we have

|xn − xm|<
ε

2
.

Consider the map
N→ N where i 7→ ni,

which is strictly increasing. As such, we can choose k0 ≥ N such that nk0 ≥ M, i.e. choose k0 = max{N,M}.
As such, for all n ≥ M, we have

|xn − x|=
∣∣∣xn − xnk0

+ xnk0
− x
∣∣∣

≤
∣∣∣xn − xnk0

∣∣∣+ ∣∣∣xnk0
− x
∣∣∣ by the triangle inequality

<
ε

2
+

ε

2

which is bounded above by ε . Then, the result follows.
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Proposition 2.4 (properties of Cauchy sequences). Let F be an ordered field. Suppose {xn}n∈N and
{yn}n∈N are Cauchy sequences in F . Then, the following hold:

(i) {xn + yn}n∈N is also Cauchy in F
(ii) {−xn}n∈N is also Cauchy in F

(iii) {xnyn}n∈N is also Cauchy in F

We will only prove (iii) of Proposition 2.4 (actually, (i) and (ii) can be deduced in the midst of our proof).

Proof. Since {xn}n∈N ,{yn}n∈N are Cauchy sequences, by Theorem 2.18, they are bounded, i.e. there exists
M > 0 such that for all n ∈ N, we have |xn| ≤ M and |yn| ≤ M.

Also, there exists N ∈ N such that for all m,n ≥ N, we have

|xm − xn|<
ε

2M
and |ym − yn|<

ε

2M
.

As such, for every m,n ≥ N, we have

|sntn − smtm|= |(sn − sm) tn + smtn − smtm|
= |(sn − sm) tn +(tn − tm)sm|
≤ |sn − sm| |tn|+ |tn − tm| |sm| by the triangle inequality

<
ε

2M
·M+

ε

2M
·M

which is bounded above by ε . The result follows.

Definition 2.14 (Cauchy complete). An ordered field F is Cauchy complete if and only if every
Cauchy sequence in F is convergent in F .

In general, given a sequence {xn}n∈N in an ordered field F , it is difficult to decide whether {xn}n∈N
converges in F or ont. In principle, one needs to test every x ∈ F as a possible limit. However, if F is a Cauchy
complete field, then

{xn}n∈N converges in F if and only if it is Cauchy in F.

So, it suffices to just check whether {xn}n∈N is a Cauchy sequence — a much simpler task!

Definition 2.15 (Cauchy criterion for convergence). Let {xn}n∈N be a sequence in R. Then, {xn}n∈N
converges if and only if it is Cauchy.

Example 2.56 (Q is not Cauchy complete). Consider the Fibonacci sequence defined as follows:

for all n ∈ Z≥0 we have Fn+1 = Fn +Fn−1 with initial condition F0 = F1 = 1.

Let {xn}n∈Z≥0
be the sequence in Q defined as follows:

xn =
Fn

Fn+1
.

Then, x0 = 1 and

for all n ∈ N we have xn+1 =
1

1+ xn
in Q.

This is because
xn+1 =

Fn+1

Fn+2
=

Fn+1

Fn+1 +Fn
=

1
1+ pn

.
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For all n ∈ N, we claim that 1/2 ≤ xn ≤ 2/3. To see why, first note that we have x1 = 1/2. By induction, if we
have

1
2
≤ xn ≤

2
3

then
3
2
≤ 1+ xn ≤

5
3
< 2.

This shows that

1
2
≤ xn+1 =

1
1+ pn

≤ 2
3
.

We claim that {xn}n∈N is a contractive sequence (just to jump the gun, this appears in Definition 2.16). To see
why, note that for all n ∈ N, we have

|xn+1 − xn|=
∣∣∣∣ 1
1+ xn

+
1

1+ xn−1

∣∣∣∣≤ |xn − xn−1|
(1+ xn)(1+ xn−1)

≤ 4
9
|xn − xn−1| .

By applying the definition of xn recursively (this is just induction), for all n ∈ N, we have

|xn+1 − xn| ≤
4
9
|xn − xn−1| ≤ . . .≤

(
4
9

)n

|x1 − x0|<
(

4
9

)n

.

Writing this compactly, we have

|xn+1 − xn| ≤
(

4
9

)n

.

Moreover, for all n,r ∈ N, we have

|xn+r − xn+r−1| ≤
4
9
|xn+r−1 − xn+r−2| ≤ . . .≤

(
4
9

)r−1

|xn+1 − xn| .

So,

|xn+r − xn|= |xn+r − xn+r−1 + . . .+ xn+1 − xn|
= |xn+r − xn+r−1|+ . . .+ |xn+1 − xn| by the triangle inequality

≤

[(
4
9

)r−1

+

(
4
9

)r−2

+ . . .+1

]
|xn+1 − xn|

<
1

1− 4
9

|xn+1 − xn|

=
9
5
|xn+1 − xn|

Again, writing this compactly, we have

|xn+r − xn|<
9
5
|xn+1 − xn|.

Hence,

|xn+r − xn|<
9
5

(
4
9

)n

.

First, we claim that {xn}n∈N is a Cauchy sequence in Q. Let ε > 0 be arbitrary. We shall choose N ∈ N such
that 9

5

(4
9

)N
< ε . Then, for all m,n ≥ N with m = n+ r, we have

|xm − xn|= |xn+r − xn|<
9
5

(
4
9

)n

< ε.

However, {xn}n∈N does not converge in Q. To see why, suppose on the contrary that xn → x in Q. Recall that
for all n ∈ N, we have

1
2
≤ xn ≤

2
3

which implies
1
2
≤ x ≤ 2

3
.
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Then, 1+ xn → 1+ x in Q and 3/2 ≤ 1+ x ≤ 5/3. So,

xn+1 =
1

1+ xn
→ 1

1+ x
in Q.

Since {xn+1}n∈N and {xn}n∈N have the same limit, then

1
1+ x

= x in Q.

This means that x ∈ Q satisfies the equation x2 + x = 1, i.e. (2x+1)2 = 5 in Q. However, there does not exist
x ∈Q such that (2x+1)2 = 5.

Example 2.57 (Bartle and Sherbert p. 91 Question 7). Let {xn}n∈N be a Cauchy sequence such that xn is
an integer for every n ∈ N. Show that {xn}n∈N is eventually constant.

Solution. Since the sequence is Cauchy, for any ε > 0 there exists an N ∈N such that for all m,n ≥ N, we have
|xm − xn|< ε . In particular, choose ε = 1

2 . Since xn ∈ Z, then xm −xn ∈ Z. The only integer with absolute value
less than 1

2 is 0. Therefore, for all m,n ≥ N, |xm − xn|= 0 implies xm = xn. □

Example 2.58 (Bartle and Sherbert p. 91 Question 9). If 0 < r < 1 and |xn+1 − xn|< rn for all n ∈N, show
that {xn}n∈N is a Cauchy sequence.

Solution. Let ε > 0 be arbitrary. Let N in N be chosen such that

rN

1− r
< ε.

Then, for m ≥ n ≥ N sufficiently large, we have

|xm − xn|= |(xm − xm−1)+(xm−1 − xm−2)+ . . .+(xn+1 − xn)|
≤ |xm − xm−1|+ |xm−1 − xm−2|+ . . .+ |xn+1 − xn|
≤ rm−1 + rm−2 + . . .+ rn

=
rn (1− rm−n)

1− r

≤ rn

1− r
< ε

□

Definition 2.16 (contractive sequence). Let F be an ordered field. A sequence {xn}n∈N is said to be
contractive if

there exists 0 <C < 1 such that |xn+2 − xn+1| ≤C |xn+1 − xn| for all n ∈ N.

Lemma 2.3 (contractive implies convergent). Every contractive sequence is convergent, and hence
Cauchy.

Lemma 2.4. A sequence xn is contractive if

there exists 0 <C < 1 such that |xn+2 − xn+1| ≤Cn−1 |x2 − x1| for all n ∈ N.

Proof. Repeatedly apply the inequality in Definition 2.16.
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Example 2.59 (Bartle and Sherbert p. 91 Question 11). If y1 < y2 are arbitrary real numbers and

yn =
1
3

yn−1 +
2
3

yn−2 for n > 2,

show that {yn}n∈N is convergent. What is its limit?

Solution. We have

|yn − yn−1|=
∣∣∣∣13yn−1 +

2
3

yn−2 − yn−1

∣∣∣∣= 2
3
|yn−1 − yn−2|

=

(
2
3

)2

|yn−2 − yn−3|

= . . . by applying the formula recursively

=

(
2
3

)n−2

|y2 − y1|

Hence, for m,n ∈ N sufficiently large enough, where m ≥ n, we have

|ym − yn|= |(ym − ym−1)+(ym−1 − ym−2)+ . . .+(yn+1 − yn)|

≤

[(
2
3

)m−2

+

(
2
3

)m−3

+ . . .+

(
2
3

)n−1
]
|y2 − y1|

≤

(2
3

)n−1
[
1−
(2

3

)m−n
]

1
3

|y2 − y1|

= 3
(

2
3

)n−1
[

1−
(

2
3

)m−n
]
|y2 − y1|

≤ 3
(

2
3

)n

|y2 − y1|

This shows that {yn}n∈N is a Cauchy sequence in R, so it converges.

We then compute the limit of the sequence. We have

yn − yn−1 =−2
3
(yn−1 − yn−2)

=

(
−2

3

)2

(yn−2 − yn−3)

= . . . by applying the formula recursively

=

(
−2

3

)n−2

(y2 − y1)

so

yn−1 − yn−2 =

(
−2

3

)n−3

(y2 − y1)

and so on. Hence,

(yn − yn−1)+(yn−1 − yn−2)+ . . .+(y3 − y2) =

[(
−2

3

)n−2

+

(
−2

3

)n−3

+ . . .+

(
−2

3

)]
(y2 − y1)

yn − y2 =

(
−2

3

)[
1−
(
−2

3

)n−2
]

5
3

(y2 − y1)



MA2108 MATHEMATICAL ANALYSIS I Page 70 of 148

Taking the limit as n goes to infinity,

lim
n→∞

yn =−2
5
(y2 − y1)+ y2 =

2
5

y1 +
3
5

y2

which is the desired limit of the sequence. □

Example 2.60 (MA2108 AY19/20 Sem 1). Let a1 ≥ 0 and for n ≥ 1, define

an+1 =
3(1+an)

3+an

(a) Prove that an converges.
(b) Find the limit.

Solution.
(a) We have

|an+2 −an+1|=

∣∣∣∣∣3(1+an+1)−3an+1 −a2
n+1

3+an+1

∣∣∣∣∣=
∣∣∣∣∣3−a2

n+1

3+an+1

∣∣∣∣∣ ,
which simplifies to ∣∣∣∣ 3−a2

n

(3+an)(2+an)

∣∣∣∣= ∣∣∣∣3−a2
n

3+an

∣∣∣∣ · 1
|2+an|

<

∣∣∣∣3−a2
n

3+an

∣∣∣∣= |an+1 −an|

so an is a contractive sequence. By Lemma 2.3, an converges.
(b) Suppose

lim
n→∞

an = L.

Thus,

L =
3(1+L)

3+L
.

Since L > 0, then L =
√

3.

Theorem 2.19 (equivalent characteristics of R). Let F be an ordered field. Then, the following are
equivalent:

(i) F has the least upper bound property
(ii) Every monotonically increasing sequence in F which is bounded above converges in F (precisely

the monotone convergence theorem)
(iii) F is Archimedean and Cauchy complete

Proof. (i) implies (ii) follows from Proposition 2.2. We then prove (ii) implies (iii). Suppose on the contrary
that the ordered field F does not satisfy the Archimedean property. Then, there exist a,b ∈ F>0 such that for all
n ∈ N, we have na ≤ b, so {na}n∈N is a monotonically increasing sequence in F (as a > 0) which is bounded
above by b. As such, there exists x ∈ F such that na → x.

So, with ε = a∈ F>0, there exists N ∈N such that for all n≥N, we have |na− x|< ε = a. We can rewrite this as
x−a < Na < x+a, but then x+a < (N +1)a, which leads to a contradiction. This forces F to be Archimedean.

We then prove that F is Cauchy complete. Let {xn}n∈N be a Cauchy sequence in F . Then, choose a subsequence
{xnk}k∈N which is monotone. Without loss of generality, assume that it is monotonically increasing. Since
{xn}n∈N is bounded above, then so is the subsequence {xnk}k∈N. By the hypothesis, as the subsequence
converges in F , then the original sequence {xn}n∈N also converges in F . Note that similar claims can be made
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for the case when {xnk}k∈N is monotonically decreasing.

Lastly, we prove (iii) implies (i). Suppose F is Archimedean and Cauchy complete. Let S ⊆ F to be a non-
empty subset which is bounded above. We wish to prove that there exists a least upper bound of S in F . Since
S ̸= /0, then there exists a0 ∈ F such that a0 is not the upper bound of S. To achieve this, for instance, one can
choose s0 ∈ S and set a0 = s0 − 1. Also, since S is bounded above, then there exists b0 ∈ F such that b0 is an
upper bound of S. It is clear that

a0 < b0 in F or equivalently b0 −a0 > 0 in F.

Define the sequences {an}n∈N and {bn}n∈N in F recursively as follows. If an and bn have been defined, consider
(an +bn)/2 ∈ F , which would either be an upper bound of S or not.

Thereafter, set

an+1 =

an if an+bn
2 is an upper bound of S;

an+bn
2 otherwise

and bn+1 =

an+bn
2 if an+bn

2 is an upper bound of S;

bn otherwise

By induction, one can deduce the following. First, an is not an upper bound of S but bn is an upper bound of S.
Moreover,

an ≤ an+1 ≤ bn+1 ≤ bn.

Lastly,

bn −an =
b1 −a1

2n−1 .

It is a simple exercise (one can use the formal definition of limits) to deduce that

lim
n→∞

(bn −an) = 0.

We claim that {an}n∈N and {bn}n∈N are Cauchy sequences in F . To see why, given any ε ∈ F>0, since bn−an →
0 in F , then there exists N ∈ N such that for all n ≥ N, one has 0 < bn −an < ε . In particular, bN −aN < ε . By
using the fact that {an}n∈N and {bn}n∈N are Cauchy sequences, for all m,n ∈ N where n ≥ m ≥ N, we have

aN ≤ am ≤ an ≤ bn ≤ bm ≤ bN .

So,
|an −am| ≤ bN −aN < ε and |bn −bm| ≤ bN −aN < ε.

By the Cauchy completeness of F , {an}n∈N and {bn}n∈N converge in F . Let

a = lim
n→∞

an and b = lim
n→∞

bn.

First, we claim that a = b in F . We know that for all n ∈ N, an ≤ bn so a ≤ b in F . By way of contradiction, if
a< b in F , we shall define ε = b−a> 0 in F . By convergence (the last expression |bn −an| involves considering
a Cauchy sequence in a Cauchy complete field, which converges), there exists N ∈ N such that for all n ≥ N,
we have

|an −a| , |bn −b| , |bn −an| are all <
ε

3
.

Hence,

ε = |b−a| ≤ |b−bn|+ |bn −an|+ |an −a|

by the triangle inequality, but the sum of terms on the right is bounded by three copies of ε/3, which adds to ε .
As such, ε < ε , which is a contradiction. One can then prove that b is the least upper bound of S in F , justifying
that F has the least upper bound property.
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2.7
The Extended Real Number System

We begin our discussion with the extended real numbers. Let

[−∞,+∞] = {−∞}⊔R⊔{+∞} where ⊔ denotes disjoint union.

−∞ +∞

R

−3 −2 −1 1 2 3

For all x∈R, define −∞< x<+∞ which preserves the original order in R. This is a total ordering on [−∞,+∞].
Note that for any subset E of [−∞,+∞], we say that

+∞ is an upper bound of E and −∞ is a lower bound of E.

Thus, sup(E) , inf(E) always exist in [−∞,+∞].

Example 2.61. We have sup( /0) =−∞ and inf( /0) = +∞.

Example 2.62. Let

A ⊆ R be a set which is not bounded above in R and B ⊆ R be a set which is not bounded below in R.

Then, sup(A) = +∞ and inf(B) =−∞.

Remark 2.3. The extended real number system does not form a field.

Here are some conventions. If x is real, then

x+∞ = ∞ and x−∞ =−∞ and
x

+∞
=

x
−∞

= 0.

If x > 0, then
x · (+∞) = +∞ and x · (−∞) =−∞.

Lastly, if x < 0, then
x · (+∞) =−∞ and x · (−∞) = +∞.

In contrast, in Measure Theory, the convention is that 0 · {±∞} = 0. On the other hand, in Complex Analysis,
+∞ =−∞ in C but 0 ·∞ is undefined.

Definition 2.17. A sequence {sn}n∈N in [−∞,∞] converges to ∞ if and only if

for all A ∈ [−∞,∞] there exists N ∈ N such that for all n ≥ N one has sn > A in [−∞,∞] ,

i.e. sn is closer to ∞ than A is.

Similarly, a sequence {sn}n∈N in [−∞,∞] converges to −∞ if and only if

for all B ∈ [−∞,∞] there exists N ∈ N such that for all n ≥ N one has sn < B in [−∞,∞] ,

i.e. sn is closer to −∞ than B is.

We write
lim
n→∞

sn =±∞ or {sn}n∈N →±∞ in [−∞,∞] .
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Proposition 2.5. Let {sn}n∈N be a sequence in [−∞,∞] and x ∈ [−∞,∞]. Then, {sn}n∈N → x in [−∞,∞]

if and only if the following properties hold:
(a) for all A ∈ [−∞,∞] with A < x, there exists N ∈ N such that for all n ≥ N, we have A < sn

(b) for all B ∈ [−∞,∞] with x < B, there exists M ∈ N such that for all n ≥ M, we have sn < B

Lemma 2.5. For any sequence {sn}n∈N in R, there exists a subsequence {sni}i∈N which converges in
[−∞,∞].

Proof. Recall Theorem 2.15 on the existence of monotone subsequences. Given a monotone subsequence
{sni}i∈N. If

the sequence is increasing and bounded above then the subsequence converges to R

the sequence is increasing and not bounded above then the subsequence converges to +∞

the sequence is decreasing and bounded below then the subsequence converges to R

the sequence is decreasing and not bounded below then the subsequence converges to −∞

2.8
Cluster Point, Limit Superior and Limit Inferior

Definition 2.18 (cluster point). Let {xn}n∈N be a sequence in R. A cluster point of a sequence is
a number that is the limit of some convergent subsequence. Equivalently, a point L is a cluster point
of the sequence {xn}n∈N if every neighbourhood around L contains infinitely many terms of the sequence.

Let
E =

{
the limits in [−∞,∞] of all convergent subsequences of {xn}n∈N

}
.

By Lemma 2.5, E is non-empty. In fact, we call it the set of cluster points of xn.

Definition 2.19 (limit superior and limit inferior). We define the limit superior and limit inferior of xn

to be the following:
limsup

n→∞

xn = sup(E) and liminf
n→∞

xn = inf(E)

where E is the set of cluster points of xn as mentioned in Definition 2.18.

Proposition 2.6. Let {xn}n∈N be a sequence in R. Then,

liminf
n→∞

xn ≤ limsup
n→∞

xn in [−∞,∞] .

Equality holds if and only if {sn}n∈N converges in [−∞,∞] in which case

liminf
n→∞

xn = lim
n→∞

xn = limsup
n→∞

xn in [−∞,∞] .

Proof. The set

E =
{

the limits in [−∞,∞] of all convergent subsequences of {xn}n∈N
}
̸= /0
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as mentioned earlier. Hence,

liminf
n→∞

xn = inf(E) is ≤ sup(E) = limsup
n→∞

xn

One has

lim inf
n→∞

xn = limsup
n→∞

in [−∞,∞]

if and only if either of the following hold:
(i) E = {x∗} is a singleton subset of [−∞,∞]

(ii) there exists x∗ ∈ [−∞,∞] such that every convergent subsequence of {xn}n∈N converges to x∗ in [−∞,∞]

(iii) there exists x∗ ∈ [−∞,∞] such that every subsequence of {xn}n∈N converges to x∗ in [−∞,∞]

(iv) there exists x∗ ∈ [−∞,∞] such that {xn}n∈N converges to x∗ in [−∞,∞]

Proposition 2.7 (equivalent characteristics of limit supremum). Let {xn}n∈N be a sequence in R and
let x∗ ∈ [−∞,∞]. Then, the following are equivalent:

(i) We have
x∗ = limsup

n→∞

xn

(ii) For all A ∈ [−∞,∞] with A < x∗,

there are infinitely many n ∈ N such that A < xn

or equivalently, for all N ∈ N, there exists n ≥ N such that A < xn.

Moreover, for all B ∈ [−∞,∞] with x∗,

there are only finitely many n ∈ N such that B ≤ xn

or equivalently, there exists N ∈ N usch that for all n ≥ N, we have xn < B.
(iii) We have

x∗ = inf{x ∈ [−∞,∞] : there are only finitely many n ∈ N such that x < xn}

Example 2.63 (Bartle and Sherbert p. 85 Question 17). Alternate the terms of the sequences
{

1+ 1
n

}
n∈N

and
{
−1

n

}
n∈N to obtain the sequence {xn}n∈N given by

2,−1,
3
2
,−1

2
,
4
3
,−1

3
,
5
4
,−1

4
, . . . .

Determine the values of limsupxn and liminfxn. Also find sup{xn} and inf{xn}.

Solution. We begin by writing the two sequences an = 1+ 1
n and bn = −1

n which are interlaced to form the
sequence

a1,b1,a2,b2,a3,b3, . . . .

The odd-indexed subsequence is

x2k−1 = ak = 1+
1
k
.

As k → ∞, we have

lim
k→∞

(
1+

1
k

)
= 1.
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The even-indexed subsequence is

x2k = bk =−1
k
.

As k → ∞, we have

lim
k→∞

(
−1

k

)
= 0.

Hence, limsupxn = 1 and liminfxn = 0.

Then, we find the supremum and infimum. The sequence {an}n∈N is strictly decreasing and its largest term
is a1 = 2. Also, the even-indexed terms are all negative. Hence, sup{xn} = 2. The sequence {bn}n∈N is
increasing (becoming less negative) with the smallest term b1 = −1. The odd-indexed terms are all greater
than 1. Therefore, inf{xn}=−1. □

Example 2.64 (MA2108 AY18/19 Sem 1 Midterm). For each n ∈ N, let

yn =
2n−

√
n+1

n+2
√

n+1
cos
(
(n−1)π

4

)
.

(i) Find limsupyn and liminfyn.
(ii) Is the sequence yn convergent? Justify your answer.

Solution.
(i) We first find supyn. Since cosine is bounded above by 1, then

yn ≤
2n−

√
n+1

n+2
√

n+1
= 2− 5

√
n+1

n+2
√

n+1
.

On the right side of the inequality, the denominator grows much faster than the numerator, so supyn = 2.
Now, we show that limsupyn = 2. Define

an = cos
(
(n−1)π

4

)
.

so that a8n+1 = 1 for all n ∈ N. The result follows. Use the same method to find liminfyn.
(ii) No, since liminfyn ̸= limsupyn.

Example 2.65 (MA2108 AY18/19 Sem 1 Midterm). Let an and bn be bounded sequences, and let

cn = max{an,bn} for all n ∈ N.

Prove that
limsupcn = max{limsupan, limsupbn} .

Solution. Note that an,bn ≤ cn. Define M1 = limsupan, M2 = limsupbn and M = max{M1,M2}. So, M1 ≤
limsupcn and M2 ≤ limsupcn. Thus, M ≤ limsupcn. Now, we prove that M = limsupcn.

Let c be a cluster point of cnk and cnk → c. For any arbitrary ε > 0, there exists K1,K2 ∈ N such that for
all n > K1 and n > K2, we have

|an −M1|< ε and |bn −M2|< ε respectively.

The expansion of these two inequalities yields an < M1 + ε and bn < M2 + ε . We’ll now relate this to cn =

max{an,bn}. Let K = max{K1,K2}. Then, for all n > K,

an < M1 + ε < M+ ε and bn < M2 + ε < M+ ε.

Hence, cn < M + ε . As mentioned, c is a cluster point of cnk , so cnk < M + ε . As k → ∞, it is clear that
c < M + ε . Hence, M is an upper bound for the cluster points of cn, and so limsupcn ≤ M. Combining the
purple inequalities yields the result. □
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Example 2.66 (Bartle and Sherbert p. 85 Question 19). Show that if {xn}n∈N and {yn}n∈N are bounded
sequences, then

limsup(xn + yn)≤ limsupxn + limsupyn.

Give an example in which the two sides are not equal.

Solution. Let u be a subsequential limit of xn + yn. Then, there exists a subsequence {xnk + ynk}k∈N of
{xn + yn}n∈N which converges to u. Let ε > 0. Then, there exist K1,K2 ∈ N such that

xn ≥ K1 implies xn > liminfxn +
ε

2
and yn ≥ K2 implies yn > liminfyn +

ε

2
.

Define K = max{K1,K2}. Since nk ≥ k, then for all k ≥ K, we have

u = lim
k→∞

(xnk + ynk)≥ liminfxn + liminfyn + ε.

Since ε is some arbitrary small positive number, it follows that liminfxn+ liminfyn is a lower bound for xn+yn.
As there exists a subsequence xnk + ynk converging to inf(xn + yn), then the result follows.

For the second part, let xn = (−1)n and yn = (−1)n+1. Then,

limsup(xn + yn) = 0 but limsupxn = limsupyn = 1 so limsupxn + limsupyn = 2.

□

Example 2.67 (MA2108 AY19/20 Sem 1). Let xn and yn be two bounded sequences in R. Suppose there
exists an N ∈ N such that when n > N, one has xn ≤ yn. Prove that

liminfxn ≤ liminfyn.

Solution. Define
an = inf{xk : k ≥ n} and bn = inf{yk : k ≥ n} .

As each xn ≤ yn, then infxk ≤ infyk. That is, an ≤ bn. To conclude,

liminfxn = infan ≤ infbn = liminfyn.

□
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Chapter 3
Infinite Series

3.1
Series

Let V be R or C† We let {ak}k∈N be any sequence in V . The map

∗

∑
k=1

ak : N∪{0}→V where n 7→
n

∑
k=1

ak can be defined recursively.

For the case when n = 0, we have

0

∑
k=1

ak = 0V where 0V is the additive identity of V

and for all n ∈ N∪{0}, we have
n+1

∑
k=1

ak =

(
n

∑
k=1

ak

)
+an+1.

This means that
n

∑
k=1

ak = (. . .((a1 +a2)+a3)+ . . .)+an.

From the associativity and commutativity of addition + in V , one can prove that associativity and commutativity
holds for n terms by induction. Hence, for all n ∈N and permutation σ ∈ set of permutations on {1, . . . ,n}, we
have

n

∑
k=1

aσ(k) =
n

∑
k=1

ak in V.

Hence, given any finite set I and any map a : I →V , where i 7→ ai, i.e. any finite family {ai}i∈I of elements of
V indexed by I, one can define the sum of the given series, denoted by

∑
i∈I

ai ∈V

as follows. First, set n = |I|, where n ∈ N∪{0}. We then choose any bijective map τ : {1, . . . ,n}→ I. Define

∑
i∈I

ai =
n

∑
k=1

aτ(k) = aτ(1)+aτ(2)+ . . .+aτ(n) ∈V.

This is a well-defined map which is independent of the choice of the bijection τ . With this definition, one can
prove easily the following two properties in Proposition 3.1.

Proposition 3.1 (rearrangement and repartitioning). We have the following:
(i) Rearrangement: for every permutation σ on the set {1, . . . ,n}, we have

∑
i∈I

aσ(i) = ∑
i∈I

ai in V

†For those who are interested in MA2202, more generally, the set V can be regarded as an Abelian group, i.e. a group where the group
operation is commutative.
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(ii) Repartitioning: for every finite partition
{

I j
}

j∈J of I, we have

∑
j∈J

(
∑
i∈I j

ai

)
= ∑

i∈I
ai in V.

By a finite partition, we mean that J is a finite set and for all j ∈ J, there exists I j ⊆ I such that

for all distinct j, j′ ∈ J we have I j ∩ I j′ = /0 and
⋃
j∈J

I j = I.

Definition 3.1 (norm). Let V be a vector space over R. A norm on V is a map ∥·∥ : V → R≥0 which
satisfies the following properties:

(i) Positive-definite: for all v ∈V , we have ∥v∥= 0 if and only if v = 0
(ii) Homogeneity: for all v ∈V and a ∈ R, we have ∥av∥= |a|∥v∥

(iii) Triangle inequality: for all v,w ∈V , we have ∥v+w∥ ≤ ∥v∥+∥w∥
A normed vector space consists of an R-vector space V which is equipped with a norm ∥·∥ on V .

In Definition 3.1, we gave the definition of the norm of a vector. We mentioned that V is a vector space over
R, which means that the entries of V are the real numbers! Alternatively, we say that V is an R-vector space.
Note that

R is a one-dimensional vector space over R but R is an infinite-dimensional vector space over Q.

In particular, one can easily deduce that the dimension of R over Q is uncountable.

Example 3.1. C is a two-dimensional vector space over R with basis {1, i}.

Example 3.2. Rk and Ck are finite-dimensional vector spaces over R. In Rk, the norm function is given by the
usual Euclidean k-norm, i.e.

for any v = (v1, . . . ,vk) ∈ Rk we have ∥v∥=
√

v2
1 + . . .+ v2

k ∈ R≥0.

Definition 3.2. Let V be a normed vector space and {ak}k∈N be any sequence in V . The notation

∞

∑
k=1

ak

is called the series in V defined by the sequence {ak}k∈N. For each n ∈ N, the element

n

∑
k=1

ak ∈V is the nth partial sum of the series.

Definition 3.3 (geometric sequence). A geometric sequence, un, has first term a and common ratio r.
The first few terms are

u1 = a, u2 = ar, u3 = ar2, u4 = ar3.

The general term, un, is un = arn−1, where n ∈ N.
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Proposition 3.2. The sum to n terms of a geometric sequence is denoted by Sn. We establish the
formula

Sn =
a(1− rn)

1− r
.

For the sum to infinity, S∞, we impose a restriction on r for the sum to exist. That is, |r|< 1. Hence, S∞ is

S∞ =
a

1− r
.

Remark 3.1. If r =−1, we obtain the famous Grandi’s series 1−1+1−1+ . . ..

Definition 3.4 (telescoping series). A telescoping series is a series whose general term can be written
in the form an −an−1.

Let bn = an −an−1. Then,
n

∑
k=1

bk = an −a0.

This process is known as the method of differences. There are times when the partial fraction decomposition
method has to be used on bn (Example 3.3).

Example 3.3 (Bartle and Sherbert p. 100 Question 3). By using partial fractions, show that

(a)
∞

∑
n=0

1
(n+1)(n+2)

= 1

(b)
∞

∑
n=0

1
(α +n)(α +n+1)

=
1
α

> 0 if α > 0

(c)
∞

∑
n=0

1
n(n+1)(n+2)

=
1
4

Solution. These are trivial — one should recall from H2 Mathematics on how to evaluate telescoping sums
using the method of difference. □

3.2
Properties of Convergence and Divergence

Theorem 3.1. The series

∞

∑
k=1

ak converges in V to the sum s ∈V if and only if lim
n→∞

n

∑
k=1

ak = s in V.

Example 3.4. Suppose the series

∞

∑
k=1

ak has only finitely many non-zero terms in V.

This means that the sequence {ak}k∈N in V is eventually zero. By the formal definition of a limit, there exists
N ∈ N such that for all k ≥ N, we have ak = 0V in V . Then,

∞

∑
k=1

ak converges sequentially in V to
∞

∑
k=1

ak =
N

∑
k=1

ak in V.
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Proposition 3.3 (linearity properties of convergent series). Let

∞

∑
k=1

ak and
∞

∑
k=1

bk be two convergent series in V.

Then, the following hold:
(i)

∞

∑
k=1

(ak +bk) is convergent and
∞

∑
k=1

(ak +bk) =

(
∞

∑
k=1

ak

)
+

(
∞

∑
k=1

bk

)
in V

(ii) For every c ∈ R,

∞

∑
k=1

cak is also convergent and
∞

∑
k=1

cak = c
∞

∑
k=1

ak in V

Here is a prelude into Functional Analysis (MA4211), where we define Banach spaces (Definition 3.5).

Definition 3.5 (Banach space). A Banach space is a normed vector space V where every Cauchy
sequence converges with respect to the metric induced by its norm ∥·∥.

Example 3.5. Every finite-dimensional Euclidean space is a Banach space. For example,

Rk equipped with the norm ∥x∥=
√

x2
1 + . . .+ x2

n is a Banach space.

In particular, R and C are Banach spaces.

Theorem 3.2 (Cauchy criterion for series). Let V be a Banach space and {ak}k∈N be a sequence in V .
The series

∞

∑
k=1

ak converges sequentially in V if and only if the Cauchy criterion holds.

That is, for every ε > 0, there exists N ∈ N such that for all m,n ≥ N with m ≥ n, one has∥∥∥∥∥ m

∑
k=n+1

ak

∥∥∥∥∥< ε.

Theorem 3.3. If
∞

∑
n=1

an converges then lim
n→∞

an = 0.

The converse of Theorem 3.3 does not hold in general. That is to say, the condition an → 0 is not sufficient
to ensure the convergence of the sum of an. For example,

∞

∑
n=1

1
n

diverges in R.

Example 3.6 (MA2108 AY18/19 Sem 1). Let
∞

∑
n=1

an and
∞

∑
n=1

bn

be two series with the property that there exists K ∈ N such that

an = bn for all n ≥ K.
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Prove that
∞

∑
n=1

an is convergent if and only if
∞

∑
n=1

bn is convergent.

Solution. Just use Cauchy criterion. □

Example 3.7 (Bartle and Sherbert p. 270 Question 9). Suppose {an}n∈N is a decreasing sequence of strictly
positive numbers. If

∑an converges show that lim
n→∞

nan = 0.

Give an example of a divergent series

∑an with {an}n∈N decreasing for which lim
n→∞

nan = 0.

Solution. For the first part, since {an}n∈N is decreasing and positive, for any m ≥ n, we have

am ≤ an whenever m ≥ n.

For n ∈ N sufficiently large, we have an+1 + an+2 + . . .+ a2n ≥ na2n. If the sum of ak converges, then its tail
sums must go to 0. In particular,

lim
n→∞

(an+1 + · · ·+a2n) = 0.

Hence,
0 ≤ lim

n→∞
na2n ≤ lim

n→∞
(an+1 + · · ·+a2n) = 0.

So,
lim
n→∞

na2n = 0.

Finally, by monotonicity an ≥ a2n, and the result follows. For the second part, let

an =
1

n lnn
where n ≥ 2.

□

Example 3.8 (Bartle and Sherbert p. 270 Question 10). Give an example of a divergent series

∑an with {an}n∈N decreasing and such that lim
n→∞

nan = 0

Solution. Let an =
1

n lnn . Then, the result follows. □

Example 3.9 (Bartle and Sherbert p. 270 Question 12). Let a > 0. Show that the series

∞

∑
n=1

1
1+an is divergent if 0 < a ≤ 1 and is convergent if a > 1.

Solution. We note that if a > 1, then an > 1, so

an < 1+an < 2an which implies
1

2an <
1

1+an <
1
an .

Note that
∞

∑
n=1

1
an =

1/a
1−1/a

=
1

a−1
so

1
2(a−1)

<
∞

∑
n=1

1
1+an <

1
a−1

.

So, we conclude that if a > 1, then
∞

∑
n=1

1
1+an converges.
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We then claim that
∞

∑
n=1

1
1+an diverges if a = 1.

This is clear because
∞

∑
n=1

1
1+an =

∞

∑
n=1

1
2

which is a divergent series. Lastly, we prove that the mentioned sum diverges for 0 < a < 1. Note that

lim
n→∞

1
1+an =

lim
n→∞

1

lim
n→∞

(1+an)
=

1
1+0

= 1.

Therefore, the terms 1
1+αn do not go to 0 as n → ∞. In fact, they approach 1. A necessary condition for the

convergence of an infinite series (sum of an) is its terms an → 0. Since 1
1+αn does not tend to 0, the series must

diverge. □

Example 3.10 (Bartle and Sherbert p. 277 Question 19). Let an > 0 and suppose that

∑an converges.

Construct a convergent series

∑bn with bn > 0 such that lim
n→∞

an

bn
= 0.

Hence,

∑bn converges less rapidly than ∑an.

Hint: Let An be the partial sums of

∑an and let A denote its limit.

Define b1 =
√

A−
√

A−A1 and bn =
√

A−An−1 −
√

A−An for n ≥ 1.

Solution. We have
∞

∑
n=2

bn =
∞

∑
n=2

(√
A−An−1 −

√
A−An

)
= lim

N→∞

(√
A−A1 −

√
A−AN

)
so

∞

∑
n=1

bn =
√

A−
√

A−A1 +
√

A−A1 − lim
N→∞

√
A−AN

=
√

A− lim
N→∞

√
A−AN

=
√

A

so the sum of bn converges. We then prove that

lim
n→∞

an

bn
= 0.

To see why this holds, we have

lim
n→∞

an

bn
= lim

n→∞

an√
A−An−1 −

√
A−An

= lim
n→∞

an
(√

A−An−1 +
√

A−An
)

An −An−1

= lim
n→∞

(√
A−An−1 +

√
A−An

)
which tends to 0 because An → A and An−1 → A. □



MA2108 MATHEMATICAL ANALYSIS I Page 83 of 148

Example 3.11 (Bartle and Sherbert p. 277 Question 20). Let {an}n∈N be a decreasing sequence of real
numbers converging to 0 and suppose that

∑an diverges.

Construct a divergent series

∑bn with bn > 0 such that lim
n→∞

bn

an
= 0.

Hence,

∑bn diverges less rapidly than ∑an.

Hint: Let
bn =

an√
An

where An is the nth partial sum of ∑an.

Solution. Since {an}n∈N is a decreasing sequence of real numbers converging to 0, then an > 0 for all n ∈ N.
So, the nth partial sum of the sum of an is also > 0, which implies bn > 0 for all n ∈ N. We then note that√

An+1 −
√

An =
An+1 −An√
An+1 +

√
An

=
an+1√

An+1 +
√

An
≤ an+1

2
√

An
≤ an

2
√

An
=

bn

2
.

By the method of difference, it follows that the sum of bn diverges. We then prove that

lim
n→∞

bn

an
= 0.

To see why this holds, we have

lim
n→∞

bn

an
= lim

n→∞

1√
An

= 0

and the result follows. □

Example 3.12 (Bartle and Sherbert p. 280 Question 10). If the partial sums

sn of
∞

∑
n=1

an are bounded show that the series
∞

∑
n=1

an

n
converges to

∞

∑
n=1

sn

n(n+1)
.

Solution. Observe that an = sn − sn−1. Define TN to be the partial sums of the series

∞

∑
n=1

an

n
.

Then,

TN =
N

∑
n=1

an

n
=

N

∑
n=1

sn − sn−1

n
=

N

∑
n=1

sn

n
−

N−1

∑
m=0

sm

m+1
=

N

∑
n=1

sn

n
−

N−1

∑
n=1

sn

n+1
.

Hence,

TN =
N−1

∑
n=1

(
sn

n
− sn

n+1

)
+

sN

N
.

Since sn is bounded, then sN
N tends to 0 for N sufficiently large. It follows that

TN converges to
∞

∑
n=1

sn

n(n+1)

□

3.3
Tests for Convergence
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Theorem 3.4. A series of non-negative terms converges if and only if its partial sums form a bounded
sequence.

Proof. We note that for all k ∈ N, the sequence of partial sums is monotonically increasing on R. So,

the series converges in R if and only if the sequence of partial sums converges in R

if and only if the sequence of partial sums is bounded above in R

The result follows.

Definition 3.6 (p-series). The p-series is defined by

∞

∑
n=1

1
np .

Theorem 3.5 (p-series test). If p > 1, the p-series converges. If 0 < p ≤ 1, the p-series diverges.

Example 3.13 (Bartle and Sherbert p. 101 Question 9).
(a) Show that the series

∞

∑
n=1

cosn is not convergent.

(b) Show that the series
∞

∑
n=1

cosn
n2 is convergent.

Solution.
(a) Let N ∈ N. Then,

N

∑
n=1

cosnsin1 =
1
2

N

∑
n=1

[sin(n+1)− sin(n−1)]

=
1
2

sin(N +1)

N

∑
n=1

cosn =
sin(N +1)

2sin1

Now, it suffices to show that the limit

lim
N→∞

sinN does not exist.

Consider
sin(kπ) = 0 but sin

(
π

2
+2kπ

)
= 1

which shows that the aforementioned limit does not exist. Hence, the sum of cosn is not convergent.
(b) Use the fact that −1 ≤ cosn ≤ 1, then consider the 2-series (Definition 3.6).

Example 3.14 (Bartle and Sherbert p. 270 Question 13).
(a) Does the series

∞

∑
n=1

√
n+1−

√
n√

n
converge?

(b) Does the series
∞

∑
n=1

√
n+1−

√
n

n
converge?
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Solution.
(a) We have

∞

∑
n=1

√
n+1−

√
n√

n
=

∞

∑
n=1

1
√

n
(√

n+1+
√

n
) ≥ ∞

∑
n=1

1
2(n+1)

which diverges.
(b) We have

∞

∑
n=1

√
n+1−

√
n

n
=

∞

∑
n=1

1
n
(√

n+1+
√

n
) ≤ ∞

∑
n=1

1
2n
√

n

which converges.

Theorem 3.6 (comparison test). Suppose there exists K ∈N such that 0 ≤ an ≤ bn for all n ≥ K. Then,

∞

∑
n=1

bn converges implies
∞

∑
n=1

an converges and
∞

∑
n=1

an diverges implies
∞

∑
n=1

bn diverges

Example 3.15 (Bartle and Sherbert p. 270 Question 8). If

∑an with an > 0 is convergent is ∑a2
n always convergent?

Either prove it or give a counterexample.

Solution. Observe that (
N

∑
n=1

an

)2

=
N

∑
n=1

a2
n +2∑

i< j
aia j

so (
N

∑
n=1

an

)2

≥
N

∑
n=1

a2
n.

Since ∑an converges, then ∑a2
n converges too. □

Example 3.16 (Bartle and Sherbert p. 101 Question 12). If

∑an with an > 0 is convergent is ∑
√

an always convergent?

Either prove it or give a counterexample.

Solution. Not always convergent. Consider an = 1/n2. □

Example 3.17 (Bartle and Sherbert p. 101 Question 14). If

∑an with an > 0 is convergent and if bn =
a1 +a2 + · · ·+an

n
for n ∈ N,

then show that

∑bn is not always convergent.

Solution. Let an =
1
2n . Then, the sum of an converges, but

bn =
1
n

n

∑
k=1

1
2k =

1
n

(
1− 1

2n

)
which diverges due to the presence of the harmonic series. □
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Theorem 3.7 (limit comparison test). Let

∞

∑
i=n

an and
∞

∑
i=n

bn be series of positive terms.

Define
lim
n→∞

an

bn
= L.

(i) If L > 0, then the series are either both convergent or both divergent.
(ii) If L = 0 and

∞

∑
i=1

bi converges then
∞

∑
i=1

ai converges.

Definition 3.7 (alternating series). An alternating series is a series of the form

∞

∑
n=1

an(−1)n = a1 −a2 +a3 −a4 + . . . where all an > 0 or all an < 0.

Definition 3.8 (absolute convergence). Let V be a normed vector space and {an}n∈N be any sequence
in V . Then,

∞

∑
n=1

an is absolutely convergent in V if and only if the series
∞

∑
n=1

|an| converges.

We give a classic result on the convergence of a geometric series (Theorem 3.8).

Theorem 3.8 (geometric series). If 0 ≤ x < 1, then

∞

∑
n=0

xn converges absolutely in R to
1

1− x
in R.

If x ≥ 1, the series diverges.

There is a more general result for Theorem 3.8, for which we extend it to x ∈ C. More generally,

if |x|< 1 then
∞

∑
n=0

xn converges absolutely to
1

1− x
in C and

if |x| ≥ 1 then
∞

∑
n=0

xn does not converge in C

We now prove Theorem 3.8.

Proof. If x = 1, then for all n ∈N, the nth partial sum is unbounded so the series does not converge in R. Hence,
we assume that x ̸= 1. Recall from H2 Mathematics that for any n ∈ N, the nth partial sum is

n

∑
k=0

xk =
1− xn+1

1− x
=

1
1− x

− xn+1

1− x

which implies
∞

∑
n=0

xn converges in R if and only if xn+1 converges in R.
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If |x|< 1, then xn+1 tends to 0 for large n, and

∞

∑
n=0

xn converges to
1

1− x
.

The convergence is absolute because

∞

∑
n=0

|xn|=
∞

∑
n=0

|x|n converges to
1

1−|x|
.

On the other hand, if |x| > 1, then the sequence
{

xn+1
}

n∈N is unbounded, so it cannot converge in R. Lastly,
for the case where |x|= 1 but x ̸= 1 (this can be applied to arbitrary x ∈ C), we leave it as an exercise.

Example 3.18 (Bartle and Sherbert p. 270 Question 11). If {an}n∈N is a sequence and if

lim
n→∞

n2an exists in R,

show that

∑an is absolutely convergent.

Solution. Since the aforementioned limit exists, then for every ε > 0, there exists N ∈N such that for all n ≥ N,
we have ∣∣n2an −L

∣∣< ε where lim
n→∞

n2an = L.

So,
L− ε

n2 < an <
L+ ε

n2 .

Taking absolute value, we have

|an|< max
{

L− ε

n2 ,
L+ ε

n2

}
≤ |L|+ ε

n2 .

Hence,

∞

∑
n=1

|an|=
N−1

∑
n=1

|an|+
∞

∑
n=N

|an|

≤ (N −1) max
i≤1≤N−1

|ai|+(|L|+ ε)
∞

∑
n=N

1
n2

≤ (N −1) max
i≤1≤N−1

|ai|+(|L|+ ε)
∞

∑
n=1

1
n2 since

1
n2 ≥ 0 for all 1 ≤ n ≤ N −1

It is a well-known fact that the infinite series
∞

∑
n=1

1
n2

converges — in fact to π2/6. As such,
∞

∑
n=1

|an|

is bounded above by some constant, implying that the sum of an is absolutely convergent. □

Example 3.19 (Bartle and Sherbert p. 270 Question 6). Find an explicit expression for the nth partial sum
of

∞

∑
n=2

ln
(

1− 1
n2

)
to show that this series converges to − ln2. Is this convergence absolute?
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Solution. Let

sN =
N

∑
n=2

ln
(

1− 1
n2

)
.

Then,

sN =
N

∑
n=2

ln
(

1− 1
n2

)
=

N

∑
n=2

ln(n+1)+ ln(n−1)−2lnn = ln
(

N +1
2N

)
where the last equality uses the method of difference. Letting N → ∞, we have

lim
N→∞

sN =− ln2+ lim
N→∞

ln
(

1+
1
N

)
=− ln2.

Yes, the convergence is absolute. Let

an = ln
(

1− 1
n2

)
.

Then, for all n ≥ 2, an < 0, so it follows that the sum of the absolute values is ln2. □

Theorem 3.9 (D’Alembert’s ratio test). Let

∞

∑
i=1

an be a series of positive terms.

Define

L = limsup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
(i) If L < 1 the series converges;

(ii) if L > 1 the series diverges;
(iii) if L = 1, the test is inconclusive

Proof. We first prove (i). Suppose L < 1. Then, one may choose β ∈ R such that

limsup
n→∞

∣∣∣∣an+1

an

∣∣∣∣< β < 1.

Then, by property of limit supremum, there exists N ∈ N such that for all n ≥ N, one has

|an+1|
|an|

< β .

By induction, we see that
for all p ∈ N we have |aN+p|< β

p |aN | .

That is to say, for all n ≥ N, one has |an| ≤ β−N |aN |β n. Since the sum of |an| is termwise bounded, i.e.
eventually by

β
−N |aN |

∞

∑
n=1

β
n,

then by the comparison test (Theorem 3.6), it follows that the sum of an converges absolutely.

(ii) is obvious because for all n ≥ n0, we have |an| ≥ |an0 |. Hence, |an| does not tend to 0, which implies
that the sum of an cannot converge.

We note that for (iii) of the ratio test (Theorem 3.9), it is possible for the sum to diverge or converge if
L = 1. As such, it makes sense to say that when L = 1, the ratio test is inconclusive. For example,

∞

∑
n=1

1
n

diverges and
∞

∑
n=1

1
n2 converges absolutely.

However, in both series, L = 1.
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Theorem 3.10 (Cauchy’s root test). We wish to determine if the series

∞

∑
i=1

an of positive terms is absolutely convergent.

Define
L = limsup

n→∞

n
√

an.

(i) If L < 1, the series is absolutely convergent;
(ii) if L > 1, the series diverges;

(iii) if L = 1, the test is inconclusive

Proof. If L < 1, then one can choose

β ∈ R such that limsup
n→∞

n
√
|an|< β < 1.

Then, by property of limit supremum, there exists N ∈N such that for all n ≥ N, one has n
√
|an|< β . As β < 1,

then
∞

∑
n=1

|an| is termwise dominated by
∞

∑
n=1

β
n.

By the comparison test (Theorem 3.6), it follows that the sum of an converges absolutely.

On the other hand, if L > 1, then one can choose

β ∈ R such that limsup
n→∞

n
√
|an|> β > 1.

Again, by property of limit supremum, there exist infinitely many n ∈ N such that n
√
|an|> β . Hence, |an|> 1.

As such, |an| does not tend to 0 for large n, which implies that the sum of an diverges.

We note that for (iii) of the root test (Theorem 3.10), it is possible for the sum of an to converge or diverge
if L = 1. Hence, it makes sense to say that when L = 1, the root test is inconclusive. For example, we note that

∞

∑
n=1

1
n

diverges but
∞

∑
n=1

1
n2 converges absolutely.

However, in both series, L = 1.

Example 3.20 (Bartle and Sherbert p. 276 Question 5). Show that the series

1
12 +

1
23 +

1
32 +

1
43 + . . . is convergent

but that both the ratio and the root tests fail to apply.

Solution. The sum can be written as

1
12 +

1
23 +

1
32 +

1
43 + . . .≤ 1

12 +
1
22 +

1
32 +

1
42 + . . .=

∞

∑
n=1

1
n2

which converges by the p-series test.

We then claim that the ratio test fails here. Let xn denote the terms of the sequence. Then, xn = 1
n2 if n is

odd; xn =
1
n3 if n is even. Note that if n is even, then∣∣∣∣xn+1

xn

∣∣∣∣= n2

(n+1)3 < 1.
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On the other hand, if n is odd, then ∣∣∣∣xn+1

xn

∣∣∣∣= (n+1)3

n2 > 1.

Hence, the ratio test does not apply here. Next, we claim that the root test also fails here. We have

|x2n|1/n =
1

(2n)2/n and |x2n+1|1/n =
1

(2n+1)3/n

so
lim
n→∞

|x2n|1/n = lim
n→∞

|x2n+1|1/n = 1 which implies lim
n→∞

|xn|1/n = 1.

Hence, the root test is inconclusive. □

At this juncture, we emphasise that the ratio test is frequently easier to apply than the root test. However,
the root test has wider scope — whenever the ratio test shows convergence, the root test does too, and whenever
the root test is inconclusive, the ratio test is too. That is to say, for any positive sequence of numbers {an}n∈N,
we have

liminf
n→∞

an+1

an
≤ liminf

n→∞

n
√

an in [−∞,∞) and limsup
n→∞

n
√

an ≤ limsup
n→∞

an+1

an
in (−∞,∞] .

Essentially, we can combine both inequalities as well. To see why this chain of inequalities holds in the first
place, it suffices to prove the one involving limsup.

Proof. Define
α = limsup

n→∞

an+1

an
.

We wish to show that
limsup

n→∞

n
√

an ≤ α.

If α =+∞, then we are done. As such, we assume that α ∈ (−∞,∞). Let β ∈ R be arbitrary such that α < β .
Then, by property of limit supremum, there exists N ∈ N such that for all n ≥ N, we have

an+1

an
≤ β .

For any p ∈ N, we have

aN+k+1

aN+k
≤ β for all 0 ≤ k ≤ p−1 so

aN+p

aN
≤ β

p.

Here, we have used the cancellation property of a telescoping product. That is to say, for all n ≥ N, one has
an ≤ β−NaNβ n, where we set n = N + p, i.e. n

√
an ≤ n

√
aNβ−N ·β . Hence,

limsup
n→∞

n
√

an ≤ β

and the result follows.

We take a look at Example 3.21 which discusses the superiority of the root test in comparison to the ratio
test.

Example 3.21 (root test stronger than ratio test). Let

a1 =
1
2

a2 =
1
3

a3 =
1
22 a4 =

1
32 ,

and I believe that you get the idea from here. Then,

∞

∑
n=1

an =
1
2
+

1
3
+

1
22 +

1
32 +

1
23 +

1
33 +

1
24 +

1
34 + . . . .
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Here, we see that

limsup
n→∞

n
√

an = lim
n→∞

2n

√
1
2n =

1√
2
< 1 but limsup

n→∞

an+1

an
= lim

n→∞

1
2

(
3
2

)n

=+∞.

This shows that the root test indicates convergence but the ratio test fails!

Example 3.22 (Bartle and Sherbert p. 270 Question 7).
(a) If

∑an is absolutely convergent and {bn}n∈N is a bounded sequence,

show that

∑anbn is absolutely convergent

(b) Give an example to show that if the convergence of

∑an is conditional and {bn}n∈N is a bounded sequence then ∑anbn may diverge

Solution.

(a) Since

∑an is absolutely convergent,

then suppose the limit of the sum of absolute values is L1, i.e. for every ε1 > 0, there exists N ∈ N such
that

||a1|+ . . .+ |an|−L|< ε.

Since {bn}n∈N is bounded, then there exists M ∈ R such that −M ≤ bn ≤ M for all n ∈ N. Hence, for n
sufficiently large, we have

−M (|a1|+ . . .+ |an|)≤ |a1b1|+ |a2b2|+ . . .+ |anbn| ≤ M (|a1|+ . . .+ |an|)

Since

L− ε < |a1|+ . . .+ |an|< L+ ε,

then

−ML+ εM < |a1b1|+ . . .+ |anbn|< ML+ εM

so

||a1b1|+ |anbn|− εM|< ML

so the sum anbn is absolutely convergent.
(b) Let an =

(−1)n

n and bn = (−1)n, then the sum of anbn is the harmonic series, which diverges!

Theorem 3.11 (Cauchy’s condensation test). For a non-increasing sequence of non-negative real
numbers f (n),

∞

∑
n=1

f (n) converges if and only if the condensed series
∞

∑
n=0

2n f (2n) converges.

Observe the difference in the lower indices — one of them is 1 and another is 0.
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Proof. Suppose the original series converges. We wish to prove that the condensed series converges. Consider
twice the original series.

2
∞

∑
n=1

f (n) = ( f (1)+ f (1))+( f (2)+ f (2)+ f (3)+ f (3))+ . . .

≥ ( f (1)+ f (2))+( f (2)+ f (4)+ f (4)+ f (4))+ . . .

= f (1)+( f (2)+ f (2))+( f (4)+ f (4)+ f (4)+ f (4))+ . . .

=
∞

∑
n=0

2n f (2n)

Dividing both sides by 2, the condensed series converges.

Now, suppose the condensed series converges. We wish to prove the original series converges.

∞

∑
n=0

2n f (2n) = f (1)+ f (2)+ f (2)+ f (4)+ f (4)+ f (4)+ f (4)+ . . .

≥ f (1)+ f (2)+ f (3)+ f (4)+ f (5)+ f (6)+ f (7)+ f (8)+ . . .

=
∞

∑
n=1

f (n)

This concludes the proof.

Corollary 3.1. If both series converge, the sum of the condensed series is no more than twice as large
as the sum of the original. We have the inequality

∞

∑
n=1

f (n)≤
∞

∑
n=0

2n f (2n)≤ 2
∞

∑
n=1

f (n).

Corollary 3.2. Consider a variant of the p-series

∞

∑
n=2

1
n(lnn)p .

If p > 1, the series converges. If p ≤ 1, the series diverges.

Proof. We use Cauchy’s condensation test (Theorem 3.11). Note that

f (n) =
1

n(lnn)p ,

so

2n f (2n) =
2n

2n(ln(2n))p =
1

np(ln2)p .

We have
1

(ln2)p

∞

∑
n=2

1
np

so the result follows by the conventional p-series test.
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Theorem 3.12 (partial summation formula). Given two sequences {an}n∈N ,{bn}n∈N in R indxed by
the non-negative integers Z≥0, set A−1 = 0 and for any n ≥ 0, put

An =
n

∑
k=0

ak.

Then, for any 0 ≤ p ≤ q, we have

q

∑
n=p

anbn =

(
q−1

∑
n=p

An (bn −bn+1)

)
+Aqbq −Ap−1bp.

Proof. This is easy to see because

q

∑
n=p

anbn =
q

∑
n=p

(An −An−1)bn

=
q

∑
n=p

Anbn −
q

∑
n=p

An−1bn

=
q

∑
n=p

Anbn −
q−1

∑
n=p−1

Anbn+1

and the result follows from here.

We note that the partial summation formula (Theorem 3.12) is useful in the investigation of series of the form

∞

∑
n=1

anbn.

Theorem 3.13 (Dirichlet’s test). Suppose the partial sums An form a bounded sequence in R, {bn}n∈N
is a decreasing sequence of numbers such that

lim
n→∞

bn = 0.

Then,
∞

∑
n=0

anbn converges in R.

Proof. Since {An}n∈N forms a bounded sequence, then there exists M ≥ 0 such that for all n ∈ Z≥0, we have
|An| ≤ M. Let ε > 0 be arbitrary. As

lim
n→∞

bn = 0,

then there exists N ∈ Z≥0 such that for all n ≥ N, we have 0 ≤ bn ≤ ε

2M . As such, for all p,q ≥ N with p ≤ q,
we apply the partial summation formula (Theorem 3.12) to obtain∣∣∣∣∣ q

∑
n=p

anbn

∣∣∣∣∣=
∣∣∣∣∣q−1

∑
n=p

An (bn −bn+1)+Aqbq −Ap−1bp

∣∣∣∣∣
≤

q−1

∑
n=p

|An| |bn −bn+1|+
∣∣Aq
∣∣ ∣∣bq

∣∣+ |Ap−1| |bp| by the triangle inequality

≤ M

(
q−1

∑
n=p

(bn −bn+1)+bq +bp

)
since {bn}n∈N is a decreasing sequence

≤ 2Mbp
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Since 2Mbp ≤ ε , then it follows that the partial sums of the sum of anbn form a Cauchy sequence in R. As such,
the aforementioned sum converges in R.

Example 3.23 (Fourier series). For example,

∞

∑
n=1

cosn√
n

and
∞

∑
n=1

sinn√
n

converge.

More generally, for any sequence of numbers {bn}n∈N which decreases to 0 in R, and for any x ∈ R\2πZ,

∞

∑
n=1

bn cosnx and
∞

∑
n=1

bn sinnx converge in C.

These are known as a Fourier cosine series and a Fourier sine series respectively. In many contexts, a function
can be represented as a sum of sine and cosine series, which together form a full Fourier series. Fourier cosine
series are typically used for even extensions of functions, while Fourier sine series are used for odd extensions.

By Dirichlet’s test (Theorem 3.13), it suffices to show that the partial sums of the Fourier cosine and Fourier
sine series are bounded, i.e. we should show something like

N

∑
n=1

cosnx and
N

∑
n=1

sinnx are bounded.

Indeed, by Lagrange’s trigonometric identities (can be easily proved using techniques taught in H2 Mathemat-
ics), we have∣∣∣∣∣ n

∑
k=1

coskx

∣∣∣∣∣=
∣∣∣∣∣sin

((
n+ 1

2

)
x
)
− sin 1

2 x

2sin 1
2 x

∣∣∣∣∣≤ 1∣∣sin 1
2 x
∣∣ and

∣∣∣∣∣ n

∑
k=1

sinkx

∣∣∣∣∣=
∣∣∣∣∣cos 1

2 x− cos
((

n+ 1
2 x
))

2sin 1
2 x

∣∣∣∣∣≤ 1∣∣sin 1
2 x
∣∣

which hold for all x ∈ R\2πZ.

Example 3.24 (Bartle and Sherbert p. 280 Question 6). Let {an}n∈N be a real sequence and let p < q. If

∞

∑
n=1

an

np converges show that the series
∞

∑
n=1

an

nq also converges.

Solution. We observe that
an

nq =
an

np ·
1

nq−p .

Since the sum of an
np converges, then it is bounded above by some constant M, and that the sequence formed by

1
nq−p is decreasing and tends to 0, by Dirichlet’s test (Theorem 3.13), the result follows. □

Example 3.25 (Bartle and Sherbert p. 280 Question 9). If the partial sums of

∞

∑
n=1

an are bounded show that the series
∞

∑
n=1

ane−nt converges for t > 0.

Solution. Since {e−nt}n∈N is a decreasing sequence of numbers which tends to 0, by Dirichlet’s test (Theorem
3.13, the result follows. □

We then discuss the alternating series test (Theorem 3.14), which can be seen as a special case of Dirichlet’s
test (Theorem 3.13).
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Theorem 3.14 (alternating series test). If an is an alternating series with∣∣∣∣an+1

an

∣∣∣∣≤ 1 for n ≥ 1, i.e. an decreases monotonically and lim
n→∞

an = 0,

then the sum of an converges.

Example 3.26 (alternating harmonic series). The alternating harmonic series

∞

∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+ . . . converges by the alternating series test.

Example 3.27 (MA2108 AY21/22 Sem 1 Midterm). Consider the following alternating series

∞

∑
n=1

(−1)n+1

n2/3 .

Is it convergent? Prove your conclusion.

Solution. Let

an =
1

n2/3 = n−2/3.

We verify if

lim
n→∞

an = 0

and an is monotonically decreasing. The limit property is obviously true.

Consider ∣∣∣∣an+1

an

∣∣∣∣=
∣∣∣∣∣(n+1)−2/3

n−2/3

∣∣∣∣∣=
∣∣∣∣∣
(

1+
1
n

)−2/3
∣∣∣∣∣< 1

and so an+1 < an. By the alternating series test (Theorem 3.14), the series is convergent. □

Example 3.28 (Bartle and Sherbert p. 280 Question 1). For each of the following series, determine whether
it converges absolutely and whether it converges (sequentially):

(a)
∞

∑
n=1

(−1)n+1

n2 +1
(b)

∞

∑
n=1

(−1)n+1

n+1
(c)

∞

∑
n=1

(−1)n+1 n
n+2

(d)
∞

∑
n=1

(−1)n+1 lnn
n

Solution.
(a) The series converges absolutely by the p-series test. Hence, the original series converges.
(b) The series converges but it does not converge absolutely. For the latter, it can be easily justified by

comparing it to the harmonic series.
(c) The series converges but it does not converge absolutely. For the latter, it can be easily justified by

comparing it to the harmonic series.
(d) The series converges but not absolutely. The former is a simple application of the alternating series test

(Theorem 3.14). For the latter, we note that for n > e, we have lnn > 1 so by comparing

∞

∑
n=1

lnn
n

with the harmonic series.
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Example 3.29 (Bartle and Sherbert p. 280 Question 5). Consider the series

1− 1
2
− 1

3
+

1
4
+

1
5
− 1

6
− 1

7
+ . . . ,

where the terms come in pairs of signs. Does it converge?

Solution. Let
an =

1
2n

+
1

2n+1
.

Then, the sum can be written as

1−a1 +a2 −a3 +a4 + . . .= 1+
∞

∑
n=1

(−1)n an = 1+
∞

∑
n=1

(−1)n (4n+1)
2n(2n+1)

.

Define
bn =

4n+1
2n(2n+1)

.

Then,

bn+1 −bn =
4n+5

(2n+2)(2n+3)
− 4n+1

2n(2n+1)
=− 6n+7

(2n+1)(2n+2)(2n+3)

which shows that {bn}n∈N is a decreasing sequence. In fact, bn tends to 0. By the alternating series test (Theorem
3.14), we conclude that the original series converges. □

3.4
Grouping and Rearrangement of Series

Theorem 3.15 (convergence is stable under grouping). Let V be a Banach space. If

∞

∑
n=1

an converges absolutely in V,

then any series obtained by

grouping the terms of
∞

∑
n=1

an is also absolutely convergent in V and has the same value as
∞

∑
n=1

an.

Definition 3.9 (rearrangement). A series

∞

∑
n=1

bn is a rearrangement of the series
∞

∑
n=1

an

if there is a bijection f : N→ N such that bn = a f (n) for all n ∈ N.

Theorem 3.16 (absolute convergence is stable under rearrangement). Let V be a Banach space.
Suppose the series

∞

∑
k=1

ak converges absolutely in V.

Then, for all σ ∈ set of permutations of N, the series

∞

∑
k=1

aσ(k) also converges absolutely in V and
∞

∑
k=1

aσ(k) =
∞

∑
k=1

ak in V.
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We can generalise to the following result. Given a Banach space V , for any countably infinite set I and any
map a : I →V , where k 7→ ak, the series

∑
i∈I

ai is absolutely convergent in V

if and only if for every bijection τ : N→ I, the series

∞

∑
k=1

aτ(k) converges absolutely in V or equivalently
∞

∑
k=1

∥∥aτ(k)
∥∥< ∞.

When this happens, we define

∑
i∈I

ai =
∞

∑
k=1

aτ(k) ∈V which is called the sum of the given series.

In fact, this is well-defined and independent of the choice of the bijection τ . Hence, for every ε > 0, there exists
a finite set I0 ⊆ I such that for every finite set I′ ⊆ I with I0 ⊆ I′, we have∥∥∥∥∥∑i∈I′

ai −∑
i∈I

ai

∥∥∥∥∥< ε.

It follows that we have the triangle inequality for absolutely convergent series, which states that∥∥∥∥∥∑i∈I
ai

∥∥∥∥∥≤ ∑
i∈I

∥ai∥ in R≥0.

Corollary 3.3 (rearrangement). If

∑
i∈I

ai is absolutely convergent in V,

then for every permutation σ ∈ the set of permutations of I,

∑
i∈I

aσ(i) is absolutely convergent in V and ∑
i∈I

aσ(i) = ∑
i∈I

ai in V.

The proof of Corollary 3.3 is immediate from the well-defined property of the sum of ai, where i ∈ I.

Corollary 3.4 (repartitioning). Let V be a Banach space. If

∑
i∈I

ai is absolutely convergent in V,

then for every partition
{

I j
}

j∈J of I, we have the following:
(i) for all j ∈ J, the series

∑
i∈I j

ai converges absolutely in V

(ii) the series

∑
j∈J

(
∑
i∈I j

ai

)
converges absolutely in V

(iii) we have

∑
j∈J

(
∑
i∈I j

ai

)
= ∑

i∈I
ai in V
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Example 3.30 (paradoxical?). The series

1+2+3+4+ . . .

is an interesting one. Although it is a divergent series, by certain methods such as rearrangement of the original
series or by Ramanujan summation, we obtain the formula

1+2+3+4+ . . .=− 1
12

.

Example 3.31 (MA2108S AY16/17 Sem 2 Homework 4). For xn given by the following formulae, establish
either the convergence or the divergence of the series

∞

∑
n=1

xn.

(a) xn =
n

n+1 (b) xn =
(−1)nn
n+1 (c) xn =

n2

n+1
(d) xn =

2n2 +3
n2 +1

Solution.
(a) Note that

xn = 1− 1
n+1

so
∞

∑
n=1

xn =
∞

∑
n=1

(
1− 1

n+1

)
which diverges.

(b) Pairing the terms,

∞

∑
n=1

xn = (x1 + x2)+(x3 + x4)+(x5 + x6)+ . . .

=
1
6
+

1
20

+
1
42

+
1
72

+ . . .

=
∞

∑
n=1

1
(2n)(2n+1)

=
1
2
− 1

3
+

1
4
− 1

5
+

1
6
+ . . .

The above alternating sum motivates us to use the infinite series representation of ln2, so the sum of xn

is 1− ln2, implying that xn converges.
(c) xn can be written as

xn = n−1+
1

n+1

so the sum is divergent.
(d) xn can be written as

xn = 2+
1

n2 +1

so the sum is divergent.

Example 3.32 (MA2108 AY18/19 Sem 1). Determine whether each of the following sequences is
convergent. Justify your answers.

(i)
∞

∑
n=1

(−1)n+1

√
n+

√
n2 +1
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(ii)
∞

∑
n=1

√
n+1

2n2 − cosn

(iii)
∞

∑
n=1

xn,

where xn is defined to be the following:

xn =
3n+1

(n+1)!
if n is odd, xn =− 3n−1

(n−1)!
if n is even.

Solution.
(i) We use the alternating series test as (−1)n+1 is present here. Define

an =
1

√
n+

√
n2 +1

.

We prove that an is monotonically decreasing. Note that

an+1 =
1

√
n+1+

√
(n+1)2 +1

.

It is clear that an > an+1 because
√

n <
√

n+1 and
√

n2 +1 <
√

(n+1)2 +1, thus the sequence is
decreasing. Lastly,

lim
n→∞

an = 0 so the series converges by the alternating series test.

(ii) We use the limit comparison test. Let

an =

√
n+1

2n2 − cosn
and bn =

1
n3/2 .

Note that bn is the p-series, where p = 3/2, so bn converges. Consider

lim
n→∞

an

bn
= lim

n→∞

n2 +n3/2

2n2 − cosn
= lim

n→∞

1+n−1/2

2− cosn/n2 =
1
2
.

As this limit is finite, the series converges by the limit comparison test.
(iii) The sum of xn is a rearrangement of the following alternating series:

∞

∑
n=1

(−1)n3n

n!

Use the ratio test to prove that this alternating series converges.

Example 3.33 (Bartle and Sherbert p. 276 Question 1). Establish the convergence or the divergence of the
series whose nth term is

(a)
1

(n+1)(n+2)
(b)

n
(n+1)(n+2)

(c) 2−1/n (d)
n
2n

Solution.
(a) Converges — use method of difference.
(b) Diverges — use method of difference.
(c) Diverges. Use the fact that

∞

∑
n=1

1
21/n ≥

∞

∑
n=1

1
2
.



MA2108 MATHEMATICAL ANALYSIS I Page 100 of 148

(d) Converges†. The trick is to first let the sum be S. Then,

S =
1
2
+

2
22 +

3
23 +

4
24 +

5
25 + . . .

=

(
1
2
+

1
22 +

1
23 +

1
24 +

1
25 + . . .

)
+

(
1
22 +

2
23 +

3
24 +

4
25 + . . .

)
=

(
1
2
+

1
22 +

1
23 +

1
24 +

1
25 + . . .

)
+

1
2

S

= 1+
1
2

S

So, S = 2.
Here is an interesting perspective to the arithmetic-geometric series in (d) of Example 3.33. Let X be a random
variable denoting the number of occurrences up to and including the first occurrence of a heads. Then,

P(X = k) =
1
2
·
(

1
2

)k−1

=
1
2k

as this is equivalent to saying that the first k − 1 trials are failures (i.e. tails) and the kth trial is a success
(i.e. a head). This essentially models a geometric distribution with probability of success 1/2. So, we write
X ∼ Geo(1/2). One notes that the expectation can be computed as follows:

E (X) = 1 ·P(X = 1)+2 ·P(X = 2)+3 ·P(X = 3)

= 1 · 1
2
+2 · 1

22 +3 · 1
23 + . . .

It is a well-known fact that the expectation can be computed easily — if X ∼ Geo(p), then E (X) = 1/p. Since
p = 1/2, then the expectation is 2.

Example 3.34 (Bartle and Sherbert p. 276 Question 2). Establish the convergence or divergence of the
series whose nth term is:

(a)
1√

n(n+1)
(b)

1√
n2 (n+1)

(c)
n!
nn (d)

(−1)nn
n+1

Solution.
(a) Diverges. Use the fact that

∞

∑
n=1

1√
n(n+1)

≥
∞

∑
n=1

1√
(n+1)2

=
∞

∑
n=1

1
n+1

.

(b) Converges. Use the fact that
∞

∑
n=1

1√
n2 (n+1)

≤
∞

∑
n=1

1√
n3

.

(c) Converges. By the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣∣ (n+1)!

(n+1)n+1 ·
nn

n!

∣∣∣∣∣= lim
n→∞

∣∣∣∣(n+1) ·
(

n
n+1

)n

· 1
n+1

∣∣∣∣= 1
e
< 1.

(d) Diverges by the alternating series test.

†This is known as an arithmetic-geometric series since it is the product of an arithmetic sequence and a geometric sequence. In fact, it
is known as Gabriel’s staircase.
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Theorem 3.17 (Riemann rearrangement theorem). If a series

∞

∑
n=1

an

of real numbers converges conditionally (i.e. it converges, but the series of absolute values diverges),
then for any real number L there exists a rearrangement of the terms of the series such that the rearranged
series converges to L. Moreover, it is also possible to rearrange the series so that it diverges to +∞ or
−∞, or even fails to have a limit in the extended real sense.

Example 3.35 (alternating harmonic series). Recall that the alternating harmonic series is given by

∞

∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+ . . . ,

and it is well-known that this series converges to ln2, but it does not converge absolutely. The Riemann
rearrangement theorem (Theorem 3.17) tells us that for any real number L, there exists a rearrangement of
the terms of a conditionally convergent series (like the alternating harmonic series) that converges to L. The
idea behind the rearrangement is as follows.

We first accumulate the positive terms. The positive terms are

P =

{
1,

1
3
,
1
5
,
1
7
, . . .

}
.

Add these terms until the partial sum exceeds the target L. We then consider the negative terms

N =

{
−1

2
,−1

4
,−1

6
,−1

8
, . . .

}
.

Add enough negative terms to bring the partial sum below L. Continue alternating between adding positive
terms until the sum exceeds L and then negative terms until it drops below L. This process creates a sequence
of partial sums that oscillate around L with the oscillations diminishing in size, ensuring convergence to L in
the limit.
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Chapter 4
Continuity

4.1
Metric Spaces

Definition 4.1 (metric). A metric on a set X is a map d : X × X → R≥0 satisfying the following
properties:

(i) Positive-definiteness: for all x1,x2 ∈ X , we have d (x1,x2) = 0 if and only if x1 = x2

(ii) Symmetry: for all x1,x2 ∈ X , we have d (x1,x2) = d (x2,x1)

(iii) Triangle inequality: for all x1,x2,x3, we have d (x1,x3)≤ d (x1,x2)+d (x2,x3)

A metric space consists of a set X together with a metric on d on X .

Proposition 4.1. For a normed vector space V and any subset X ⊆V ,

the map d : X ×X → R where d (X1,x2) = ∥x1 − x2∥V is a metric on X .

Example 4.1 (subspace metric). If (X ,dX) is a metric space and E ⊆ X is any subset, then

dE : E ×E → R≥0 where dE (p1, p2) = dX (p1, p2)

is the metric on E induced by X (or dX ).

Example 4.2 (discrete metric). For any set X , define

d : X ×X → R where d (x1,x2) =

1 if x1 ̸= x2;

0 if x1 = x2.

Then, d is a metric on X , called the discrete metric.

Lemma 4.1 (uniqueness of limit in metric space). Let X be a metric space. If the limit of a sequence
{xn}n∈N exists, then it is unique. That is to say,

if x,x′ ∈ X are such that lim
n→∞

xn = x and lim
n→∞

xn = x′,

then x = x′ in X .

Definition 4.2 (eventually constant). Let {xn}n∈N be a sequence in a metric space (X ,d). We say that
the sequence is eventually constant if and only if

there exists N ∈ N such that for all n ≥ N we have xn = xN .

Definition 4.3 (boundedness). Let {xn}n∈N be a sequence in a metric space (X ,d). We say that the
sequence is bounded if and only if there exists M > 0 and a point x ∈ X such that

d (xn,x)≤ M for all n ∈ N.
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Recall Example 4.2, where we introduced the discrete metric.

Proposition 4.2. Suppose d is the discrete metric on a set X . Then, a sequence

{xn}n∈N converges to x ∈ X if and only if it is eventually constant of value x.

Proof. The reverse direction holds trivially. For the forward direction, suppose {xn}n∈N → x in X , which is
equipped with the discrete metric. Take ε = 1

2 . Then, there exists N ∈ N such that for all n ≥ N, we have

d (xn,x)<
1
2

which implies xn = x,

where we used the fact that d is the discrete metric.

Lemma 4.2 (subsequence). The sequence

{xn}n∈N converges in X if and only if every subsequence of {xn}n∈N converges in X .

When this is so, the limit of {xn}n∈N is equal to the limit of any of its subsequences.

Definition 4.4. Let X be a metric space. A sequence {xn}n∈N in X is Cauchy if and only if

for all ε > 0 there exists N ∈ N such that for all m,n ≥ N we have d (xm,xn)< ε.

Proposition 4.3. Let X be a metric space. If

{xn}n∈N is convergent in X then {xn}n∈N is Cauchy.

Proposition 4.4. Let X be a metric space. If

{xn}n∈N is a Cauchy sequence then it is bounded.

Proposition 4.5. Let X be a metric space and {xn}n∈N be a Cauchy sequence in X . If

there exists a subsequence of {xn}n∈N that converges in X then {xn}n∈N also converges in X ,

and to the same limit.

Definition 4.5 (Cauchy completeness). A metric space X is

Cauchy complete if and only if every Cauchy sequence in X converges in X .

Example 4.3 (Euclidean spaces). Let V = Rk be a Euclidean space with an ordered basis B = {e1, . . . ,ek}.
For all 1 ≤ i ≤ k, let

πi : V → R denote the ith projection/coordinate map with respect to B.

A sequence

{xn}n∈N in V converges in V to x ∈V if and only if for all 1 ≤ i ≤ k we have lim
n→∞

πi (xn) = πi (x) .
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To see why, first let

xn = (π1 (xn) ,π2 (xn) , . . . ,πk (xn)) and x = (π1 (x) ,π2 (x) , . . . ,πk (x)) .

For the forward direction, suppose xn → x in Rk. By the definition of convergence in a normed space, this means
that

lim
n→∞

∥xn − x∥= 0,

where the norm ∥ · ∥ is given by the Euclidean norm

∥xn − x∥=

√
k

∑
i=1

(πi (xn)−πi (x))
2.

Now, for any fixed i with 1 ≤ i ≤ k, we have

|πi (xn)−πi (x)| ≤

√√√√ k

∑
j=1

(π j (xn)−π j (x))
2 = ∥xn − x∥ .

Since ∥xn − x∥→ 0 as n → ∞, then the forward direction holds.

For the reverse direction, assume that for each 1 ≤ i ≤ k, we have

lim
n→∞

πi (xn) = πi (x) .

We want to show that limn→∞ ∥xn − x∥ = 0. Given ε > 0, since each coordinate converges, there exists Ni ∈ N
such that for all n ≥ Ni,

|πi (xn)−πi (x)|<
ε√
k
.

Let N = max{N1,N2, . . . ,Nk}. Then for all n ≥ N and for every 1 ≤ i ≤ k, we have

|πi (xn)−πi (x)|<
ε√
k
.

Now, consider the Euclidean norm. Using the bound for each coordinate, we have:

∥xn − x∥ ≤

√
k

∑
i=1

(
ε√
k

)2

=

√
k · ε2

k
= ε.

Since ε > 0 was arbitrary, it follows that
lim
n→∞

∥xn − x∥= 0,

which is precisely the definition of convergence in Rk.

Corollary 4.1 (limit properties of convergent sequences in Euclidean spaces). Let V be a Euclidean
space, {kn}n∈N be a convergent sequence in R, and {xn}n∈N ,{yn}n∈N be convergent sequences in V .
Then, the following hold:

(i) {xn + yn}n∈N is also convergent in V and

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn in V

(ii) {−xn}n∈N is also convergent in V and

lim
n→∞

−xn =− lim
n→∞

xn in V
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(iii) {knxn}n∈N is also convergent in V and

lim
n→∞

knxn =
(

lim
n→∞

kn

)(
lim
n→∞

xn

)
in V

Corollary 4.2. Any Euclidean space is Cauchy complete.

4.2
Maps between Metric Spaces

Definition 4.6 (isometry). Let (X ,dX) and (Y,dY ) be metric spaces. A map f : X → Y is said to be an
isometry if and only if

for all x1,x2 ∈ X one has dX (x1,x2) = dY ( f (x1) , f (x2)) in R≥0.

Proposition 4.6 (isometry implies injective). An isometry f : X → Y is injective.

Proof. Suppose x1,x2 ∈ X are such that f (x1) = f (x2) in Y . Then, by positive definiteness of dY , we have

dX (x1,x2) = dY ( f (x1) , f (x2)) = 0 in R≥0.

We conclude that x1 = x2 in X .

From Proposition 4.6, we infer that most maps from a metric space (X ,dX) to R with the metric induced by
|·|R are not isometries.

Definition 4.7 (continuity). Let (X ,dX) and (Y,dY ) be metric spaces, and let f : X → Y be a map. We
say that f is continuous at a ∈ X if and only if

for every ε > 0 there exists δ > 0 such that for all a ∈ X with dX (x,a)< δ we have dY ( f (x) , f (a))< ε.

Also, f is continuous everywhere on X if and only if for all a ∈ X , f is continuous at a.

Definition 4.8 (continuous function). Let X be a metric space. A continuous function on X is

a continuous map f : X → R where R is given by the metric induced on |·|R .

Example 4.4 (isometry implies continuity). If

f : X → Y is an isometry then f is continuous.

This can be easily seen by setting = ε in Definition 4.7.

Example 4.5. Any map f : X →{a} from a metric space X to a singleton is continuous.

Example 4.6. Any map f : {a}→ X from a singleton to a metric space is continuous.

Example 4.7 (constant maps are continuous). Any constant map f : X →Y (i.e. there exists y ∈Y such that
for all x ∈ X we have f (x) = y) is continuous.

Example 4.8. Fix q ∈ X . Then,

the real-valued function dq : X → R where dq (p) = d (p,q) is continuous.
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To see why, let p ∈ X . Given ε > 0, take δ = ε > 0. As such, for all x with d (x, p)< δ , we have

d (x,q)≤ d (x, p)+d (p,q)< δ +d (p,q) and

d (p,q)≤ d (p,x)+d (x,q)< δ +d (x,q)

where we used the triangle inequality. Hence,∣∣dq (x)−dq (p)
∣∣= |d (x,q)−d (p,q)|< δ = ε

and the result follows.

Proposition 4.7 (sequential criterion for continuity). Let (X ,dX) and (Y,dY ) be metric spaces. Let
f : X → Y be a map. Then,

f is continuous at x ∈ X if and only if for every sequence {xn}n∈N with xn → x in X

one has { f (xn)}n∈N → f (x) in Y

In other words, f preserves limits of convergent sequences.

Proof. We first prove the forward direction. Say f is continuous at x ∈ X . Let {xn}n∈N be a sequence in X such
that {xn}n∈N → x in X . As such, we obtain a sequence { f (xn)}n∈N in Y . Given ε > 0, by continuity of f , there
exists δ > 0 such that

for any x0 ∈ X with dX (x0,x)< δ one has dY ( f (x0) , f (x))< ε.

Since {xn}n∈N → x in X , then there exists N ∈ N such that for all n ≥ N, we have

dX (xn,x)< δ so dY ( f (xn) , f (x))< ε.

For the forward direction, suppose on the contrary that f is not continuous at x ∈ X . Then, there exists ε > 0
such that

for any δ > 0 there exists x0 ∈ X with dX (x0,x)< δ and dY ( f (x0) , f (x))≥ ε.

For each n ∈ N, we apply the above condition with δ = 1
n > 0. We also choose

xn ∈ X with dX (xn,x)<
1
n

and dY ( f (xn) , f (x))≥ ε.

Then, {xn}n∈N is a sequence in X , and since (dX (xn,x))n∈N → 0, we see that xn → x in X . However, since for
all n ∈ N, we have dY ( f (xn) , f (x))≥ ε , then the sequence f (xn) does not tend to f (x) in Y .

Example 4.9 (Bartle and Sherbert p. 134 Question 12). A function f : R→ R is said to be additive if

f (x+ y) = f (x)+ f (y) for all x,y ∈ R.

Prove that if f is continuous at some point x0, then it is continuous at every point of R.

Solution. By the given functional equation, we can let x = y = 0 so f (0) = 2 f (0). As such, f (0) = 0. We shall
prove that f is continuous at 0, so consider

f (h) = f (x0 +h)− f (x0) .

Letting h → 0, we have
lim

h→ 0
f (h) = lim

h→0
[ f (x0 +h)− f (x0)] = 0.
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So, f is continuous at 0. Lastly, we prove that f is continuous at any point of R. Let a ∈ R be arbitrary. Then,

f (h) = f (a+h)− f (a) .

Since

lim
h→0

f (h) = 0 then lim
h→0

f (a+h) = f (a)

and the result follows. □

Example 4.10 (Bartle and Sherbert p. 134 Question 13). Suppose that f is a continuous additive function
on R. If c = f (1), show that we have f (x) = cx for all x ∈ R.
Hint: First show that if r is a rational number, then f (r) = cr.

Solution. Let r ∈Q. Then, there exist m,n ∈ Z, with n ̸= 0, such that r = m
n . So,

f (nr) = f
(

n · m
n

)
= f (m) = m f (1) = mc.

By applying the additive property on nr, we have

f (nr) = n f (r) so n f (r) = mc.

As such, f (r) = cr. We then prove that f (x) = cx for all x ∈ R. Since Q is dense in R, then there exists a
sequence of rational numbers {rn}n∈N which converges to x. By continuity of f , we have

f (x) = f
(

lim
n→∞

rn

)
= lim

n→∞
f (rn) .

Since f (r) = cr for any rational number r ∈ {rn}n∈N, it follows that f (x) = cx. □

Proposition 4.8 (identity map is continuous). The identity map

idX : X → X where x 7→ x is continuous.

Proof. This is obvious — take δ = ε in the definition of continuity (Definition 4.7).

Proposition 4.9 (composition of continuous functions is continuous). Let

f : X → Y and g : Y → Z be maps between metric spaces.

If f is continuous at x ∈ X and g is continuous at f (x) ∈ Y , then g◦ f is continuous at x ∈ X . Thus, if

f and g are continuous then g◦ f is also continuous.

Proof. Use sequential criterion for continuity (Proposition 4.7).

Proposition 4.10 (universal property of the product topology). Let X and Y be metric spaces. Let
f ,g : X → Y be maps. Then, the map

( f ,g) : X → Y ×Y where x 7→ ( f (x) ,g(x)) is continuous

if and only if both f and g are continuous (Figure 11).
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Proof. For the forward direction, from Figure 11, note that the maps

π1 : Y ×Y → Y and (π2 : Y ×Y → Y

are the canonical projection maps, and by definition of the metric product, they are continuous.

Since π1 is continuous and the diagram commutes (i.e., π1 ◦ ( f ,g) = f ), the composition f = π1 ◦ ( f ,g) is
continuous. Similarly, since π2 is continuous and π2 ◦ ( f ,g) = g, the composition g = π2 ◦ ( f ,g) is continuous.

For the reverse direction, the universal property of the product (illustrated by Figure 11) states that a map
h : X → Y ×Y is continuous if and only if the compositions with the projection maps, π1 ◦ h and π2 ◦ h,
are continuous. Here, set h = ( f ,g). We already know that f and g are continuous by assumption. Hence,
π1 ◦ ( f ,g) = f and π2 ◦ ( f ,g) = g are continuous, and the result follows.

X Y ×Y

Y

Y

f

g

( f ,g)

π1

π2

Figure 11: Universal property of the product topology

Example 4.11. Consider the metric spaces X = R and Y = R. Define

f (x) = x and g(x) = x2.

Both f and g are continuous functions. According to Proposition 4.10, the map

( f ,g) : R→ R×R where x 7→ (x,x2) is continuous.

Proposition 4.11. Let X and Y be metric spaces. so that operations such as addition, subtraction,
multiplication and scalar multiplication are defined and continuous. Suppose that

f ,g : X → Y are functions that are continuous at a point a ∈ X .

Then, we can rigorously define the following functions:
(i) Sum and difference: Define

f +g : X → Y where x 7→ f (x)+g(x) and

f −g : X → Y where x 7→ f (x)−g(X)

Since the addition (and subtraction) map + : Y ×Y → Y is continuous, the composition

x 7→ ( f (x),g(x)) 7→ f (x)+g(x) is continuous at a.
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(ii) Scalar multiplication: For any fixed scalar α ∈ R, define

α f : X → Y where x 7→ α f (x) .

The continuity of the scalar multiplication operation on Y guarantees that α f is continuous at a.
(iii) Product: Define

f g : X → Y where x 7→ f (x)g(x) .

The continuity of the multiplication map Y ×Y → Y implies that f g is continuous at a.
(iv) Quotient: If g(a) ̸= 0, then there exists a neighbourhood of a where g(x) ̸= 0. Define

f
g

: {x ∈ X : g(x) ̸= 0}→ Y where x 7→ f (x)
g(x)

.

Using the continuity of g, f
g is continuous at a.

Example 4.12 (Bartle and Sherbert p. 129 Question 3). Let a < b < c. Suppose that

f is continuous on [a,b] and that g is continuous on [b,c] ,

and that f (b) = g(b). Define h on [a,c] by

h(x) =

 f (x) if x ∈ [a,b] ;

g(x) if x ∈ [b,c] .

Prove that h is continuous on [a,c].

Solution. This is also known as the pasting lemma. We first note that because f is continuous on [a,b], then it
is continuous at every point x ∈ [a,b]. The same claim can be made for g. As such, h(x) = f (x) is continuous
at every point x ∈ [a,b), and h(x) = g(x) is continuous at every point x ∈ (b,c].

It now suffices to show that h is continuous at x = b. Let ε > 0 be arbitrary. Since f is continuous at x = b, then
whenever ε > 0, there exists δ1 > 0 such that

|x−b|< δ implies | f (x)− f (b)|< ε.

Similarly, since g is continuous at x = b, then whenever ε > 0, there exists δ2 > 0 such that

|x−b|< δ2 implies |g(x)−g(b)|< ε.

Choose δ = min{δ1,δ2}. Then, whenever |x−b|< δ , we have

|h(x)−h(b)|= | f (x)− f (b)|< ε if x ∈ [a,b] .

A similar argument holds for the case when x ∈ [b,c], so the result follows. □

Example 4.13 (Bartle and Sherbert p. 134 Question 15). Let f ,g : R→ R be continuous at a point c, and
let

h(x) = sup{ f (x) ,g(x)} for x ∈ R.

Show that

h(x) =
f (x)+g(x)

2
+

∣∣∣∣ f (x)−g(x)
2

∣∣∣∣
for all x ∈ R. Use this to show that h is continuous at c.
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Solution. For the first part, first consider the case where f (x) ≥ g(x). Then, sup{ f (x) ,g(x)} = f (x). This
implies that

f (x)+g(x)
2

+

∣∣∣∣ f (x)−g(x)
2

∣∣∣∣= f (x)+g(x)
2

+
f (x)−g(x)

2
= f (x) since f (x)≥ g(x) .

This implies that h(x) = f (x).

We then consider the case where f (x)< g(x). Then, sup{ f (x) ,g(x)}= g(x). This implies that

f (x)+g(x)
2

+

∣∣∣∣ f (x)−g(x)
2

∣∣∣∣= f (x)+g(x)
2

− f (x)−g(x)
2

= g(x) since f (x)< g(x) .

This implies that h(x) = g(x).

For the second part, we note that because f ,g : R → R are continuous at c, then their sum and difference
also continuous at c. That is to say,

f +g, f −g : R→ R are continuous at c.

So,

f (x)+g(x)
2

and
f (x)−g(x)

2
are continuous at c.

If a function f is continuous at c, then | f | is also continuous at c, so it follows that h is continuous at c. □

Definition 4.9 (ε-neighbourhood of a point). Let a ∈ R and ε > 0. The ε-neighbourhood of a is

Vε (a) = {x ∈ R : |x−a|< ε} .

Example 4.14 (Bartle and Sherbert p. 129 Question 6). Let A ⊆ R and let f : A → R be continuous at a
point c ∈ A. Show that for any ε > 0, there exists a neighbourhood Vδ (c) of c such that

if x,y ∈ A∩Vδ (c) then | f (x)− f (y)|< ε

Solution. Since f is continuous at c, then for every ε > 0, there exists δ > 0 such that whenever |x− c| < δ ,
we have

| f (x)− f (c)|< ε

2
.

Let x,y ∈ A∩Vδ (c), where Vδ (c) consists of all x ∈R such that |x− c|< δ . By the triangle inequality, we have

| f (x)− f (y)|< | f (x)− f (c)|+ | f (y)− f (c)|< ε

2
+

ε

2
which is equal to ε . The result follows. □

Example 4.15 (Bartle and Sherbert p. 129 Question 7). Let f : R → R be continuous at c and suppose
f (c)> 0. Show that there exists a neighbourhood Vδ (c) of c such that f (x)> 0 for all x ∈Vδ (c).

Solution. Since f is continuous at c, then for every ε > 0, there exists δ > 0 such that

whenever |x− c|< δ we have | f (x)− f (c)|< ε.

In particular, choose ε = f (c)
2 so

f (c)
2

< f (x)<
3 f (c)

2
.

In particular, for every x in Vδ (c), we must have f (x)> 0. □
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Definition 4.10 (floor function). The floor function of a number x, which is denoted by ⌊x⌋, is defined
to be the greatest integer less than or equal to x. Hence, for n ∈ Z,

⌊x⌋= n if x ∈ [n,n+1).

Example 4.16. ⌊π⌋= 3 and ⌊−4.8⌋=−5

Example 4.17 (Bartle and Sherbert p. 129 Question 4). If x ∈R, define [[x]] to be the greatest integer n ∈ Z
such that n < x. (For example, [[8.3]] = 8 and [[−π]] =−4.) The function x 7→ [[x]] is called the greatest integer
function (also known as floor function). Determine the points of continuity of each of the following functions:

(a) f (x) = [[x]],
(b) g(x) = x [[x]]

(c) h(x) = [[sinx]],
(d) k (x) =

[[1
x

]]
, where x ̸= 0

Solution.
(a) Continuous for all x ∈ (n,n+1), where n ∈ Z.
(b) Continuous for all x ∈ (n,n+1)∪{0}, where n ∈ Z. This is because

g(0) = 0 by direct substitution and lim
x→0−

g(x) = 0.

(c) Continuous for all x ∈ (nπ,(n+1)π), where n ∈ Z.
(d) Continuous for all

x ∈
∞⋃

n=1

(
1

n+1
,
1
n

)
∪

∞⋃
n=1

(
−1

n
,− 1

n+1

)
∪ (−∞,−1)∪ (1,∞) .

Definition 4.11 (fractional part). For any number x, the fractional part of it is defined by {x}. So, for
any x > 0, we have

{x}= x−⌊x⌋ .

Example 4.18 (Bartle and Sherbert p. 134 Question 4). Let x 7→ [[x]] denote the greatest integer function.
Determine the points of continuity of the function f (x) = x− [[x]].

Solution. We claim that f is continuous on all x ∈ R \Z. The function f in the question is also known as the
fractional part function, which returns the fractional part of x.

For any n ∈ Z, on the interval (n,n+1), we note that [[x]] is constant and equal to n. Hence, on (n,n+1)
the function simplifies to f (x) = x− n, which is a linear function. Linear functions are continuous, so f is
continuous on each interval (n,n+1).

At the integer points, the behaviour of f (x) changes because the value of the greatest integer function (or
floor function) jumps. For any integer n, we have

lim
x→n+

f (x) = lim
x→n+

(x−n) = 0 but lim
x→n−

f (x) = lim
x→n−

(x− (n−1)) = 1.

As the left-hand and right-hand limits at x = n are different, the function is discontinuous at every n ∈ Z. □



MA2108 MATHEMATICAL ANALYSIS I Page 112 of 148

Definition 4.12 (ceiling function). The ceiling function of a number x, which is denoted by ⌈x⌉, is
defined to be the least integer greater than or equal to x. Hence, for n ∈ Z,

⌈x⌉= n if x ∈ (n,n+1].

Example 4.19. ⌈6.1⌉= 7 and ⌈−7.8⌉=−7

Two important inequalities in relation to the floor and ceiling function respectively are

n ≤ ⌊x⌋< n+1 and n < ⌈x⌋ ≤ n+1 for n ∈ Z,

which can be used to solve equations, inequalities and limits involving them.

Example 4.20 (Bartle and Sherbert p. 129 Question 11). Let K > 0 and let f : R→R satisfy the condition

| f (x)− f (y)|< K |x− y| for all x,y ∈ R.

Show that f is continuous at every point c ∈ R.

Solution. The given condition is known as Lipschitz continuity. Let ε > 0 be arbitrary. Choose δ = ε

K Then,
whenever |x− c|< δ , we have

| f (x)− f (c)|< ε

δ
|x− c|< ε

δ
·δ = ε

so f is continuous at every point c ∈ R. □

Example 4.21 (Bartle and Sherbert p. 129 Question 12). Suppose that f : R → R is continuous at every
point of R and that f (r) = 0 for every rational r. Prove that f (x) = 0 for every x ∈ R.

Solution. Suppose on the contrary that there exists x ∈ R such that f (x) ̸= 0. Without loss of generality, say
f (x)> 0. Since f is continuous at x, then there exists δ > 0 such that for any y satisfying |y− x|< δ , we have

| f (y)− f (x)|< f (x)
2

.

This implies that for any y ∈ (x−δ ,x+δ ), we have f (y)> 0. However, by the density theorem (Theorem 1.1),
Q is dense in R so there exists at least one rational number r in (x−δ ,x+δ ). By the hypothesis, f (r) = 0,
which is a contradiction as we must have f (r)> 0. □

Example 4.22 (Bartle and Sherbert p. 130 Question 14). Let A = (0,1), and let k : A → R be defined as
follows. For x ∈ A, if x is irrational, we define k(x) = 0; for x ∈ A rational and of the form x = m

n with natural
numbers m,n having no common factors except 1, we define k(x) = n.

Prove that k is unbounded on every open interval in A. Conclude that k is not continuous at any point of
A.

Solution. Let I be an arbitrary open interval in (0,1). We will prove that for any positive integer N, there exists
a rational number x ∈ I of the form x = m

n in lowest terms with n > N. One way to go about is to consider
Farey sequences. For a given N, the Farey sequence of order N (Figure 12) contains all rationals in [0,1] with
denominators at most N. The gaps between these rationals become arbitrarily small as N increases. Since I is
an open interval, it will eventually contain rationals that are not in the Farey sequence of any fixed order N. In
other words, there is a rational m

n ∈ I in lowest terms for which n > N.
Since N ∈ N was arbitrary, this shows that k is unbounded on I.
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Figure 12: Visualising a Farey sequence

For the second point, suppose c ∈ A is irrational. At c, we have k (c) = 0. However, in any open interval
containing c, there exist rational numbers with arbitrarily large denominators, hence with arbitrarily large values
of q. As such, we can take a sequence xn of rational numbers converging to c. Then, the sequence k (xn) can be
made to diverge to infinity, contradicting the requirement for continuity.

On the other hand, suppose c is rational. At c, suppose c = p
q in lowest terms, so k (c) = q. Again, any

neighbourhood of c contains irrational numbers x, for which k (x) = 0. Consider a sequence of irrational
numbers converging to c. Then, k (xn) = 0 for all n, so the limit of k (xn) = 0, which is different from k (c) = q.
The result follows. □

Example 4.23 (Bartle and Sherbert p. 134 Question 7). Give an example of a function f : [0,1]→ R that
is discontinuous at every point of [0,1] but such that | f | is continuous on [0,1].

Solution. Consider

f (x) =

1 if x ∈Q′

−1 if x ∈Q

so that | f (x)|= 1, which holds for all x ∈ R since R is the disjoint union of rationals and irrationals. □

Example 4.24 (Bartle and Sherbert p. 134 Question 8). Let f ,g be continuous from R to R, and suppose
f (r) = g(r) for all rational numbers r. Is it true that f (x) = g(x) for all x ∈ R?

Solution. We claim that the statement is true. Suppose on the contrary that there exists x ∈ R such that f (x) ̸=
g(x). Define

ε =

∣∣∣∣ f (x)−g(x)
2

∣∣∣∣> 0.

As f : R→ R is continuous at r, there exists δ1 > 0 such that whenever |x− r|< δ1, we have | f (x)− f (r)|<
ε . Similarly, as g : R → R is continuous at r, there exists δ2 > 0 such that whenever |x− r| < δ2, we have
|g(x)−g(r)|< ε . Take δ = min{δ1,δ2}. Then,

2ε = | f (x)−g(x)|
= | f (x)− f (r)+ f (r)+g(r)−g(x)−g(r)|
≤ | f (x)− f (r)|+ |g(x)−g(r)|+ | f (r)−g(r)| by the triangle inequality

< ε + ε + | f (y)−g(y)|
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Choose y ∈ (x−δ ,x+δ ) to be a rational number. Then, because f (y) = g(y) for all y ∈Q, then f (y)−g(y) =
0, so it follows that 2ε < 2ε , which is a contradiction. We conclude that f (x) = g(x) for all x ∈ R. □

Example 4.25 (Bartle and Sherbert p. 134 Question 9). Let h : R → R be continuous on R satisfying
h
( m

2n

)
= 0 for all m ∈ Z and n ∈ N. Show that

h(x) = 0 for all x ∈ R.

Solution. Suppose on the contrary that there exists x ∈ R such that h(x) ̸= 0. Without loss of generality, say
h(x)> 0. Since h : R→ R is continuous at x, then there exists δ > 0 such that for every y ∈ R satisfying

|y− x|< δ we have |h(y)−h(x)|< h(x)
2

.

In particular, we have

h(y)>
h(x)

2
> 0.

Note that the set of m
2n over all m ∈ Z and n ∈ N is dense in R. In particular, we have h(y0) = 0, where y0 =

m
2n

is some rational†. Since y0 was chosen such that y0 ∈ (x−δ ,x+δ ), then our continuity argument implies

h(y0)>
h(x)

2
> 0

which is a contradiction since we must have h(y0) = 0. We conclude that h(x) = 0 for all x ∈ R. □

4.3
Basic Results on Continuous Functions

Theorem 4.1 (extreme value theorem). Let X = [a,b]⊆R be a closed and bounded interval in R. Let
f : X → R be a continuous function on X . Then,

there exists x ∈ X such that f (x) = sup( f (X)) in R.

In the extreme value theorem (Theorem 4.1), sup f (X) ∈ R is a finite real number, i.e. not +∞. That is to
say, f is bounded on X and is a value actually attained by f at the point x ∈ X . We make some remarks:

(i) The continuity of f is necessary. For example,

f : [−1,1]→ R where f (x) =

1
x if x ̸= 0;

0 if x = 0

is not continuous, so sup( f [−1,1]) = +∞ is not attained by f .
(ii) Also, boundedness of X is necessary. For example,

f : [0,∞)→ R where f (x) = x

is unbounded so sup( f [0,∞)) = +∞ is not attained by f .
(iii) The closedness of X is necessary. For example, we have

f : (0,1]→ R where f (x) =
1
x

is not closed so sup((0,1]) = +∞ is not attained by f .

†To be precise, y0 is said to be a dyadic rational. Look up dyadic partitioning.
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(iv) The least upper bound property of R is necessary. For example, we have

f : [0,2]∩Q→ R where f (x) =
1

x2 −2

and we note the domain does not satisfy the least upper bound property of R so sup( f [0,2]∩Q) = +∞

is not attained by f .
We now prove the extreme value theorem (Theorem 4.1).

Proof. Suppose f : X = [a,b] → R is continuous. We wish to show that there exists x ∈ X such that f (x) =
sup f (X) in R. We already have f (X)⊆ R since X ̸= /0, so sup f (X) exists in R∪{+∞}.

We claim that sup f (X) lies in R, i.e. not +∞. Suppose on the contrary that sup f (X) = +∞. Then,

for all n ∈ N there exists xn ∈ X such that f (xn)≥ n in R.

Thus, we obtain a sequence {xn}n∈N in X ⊆ R such that f (xn)→ ∞ in [−∞,∞]. By the monotone subsequence
theorem (Theorem 2.15), there exists a subsequence {xnk}k∈N which is monotone. Since X is a bounded set and
by the least upper bound property of R, the monotone subsequence must converge in R, i.e.

there exists x ∈ R such that xnk → x as k → ∞.

Since X is a closed interval, then x∈X . By continuity of f , we have f (xnk)→ f (x) in R, which is a contradiction
because we earlier assumed that f (xn)→ ∞.

We then claim that
there exists x ∈ X such that f (x) = sup f (X) in R.

By definition of supremum,

for each n ∈ N we have sup f (X)− 1
n
∈ R is not an upper bound of f (X) .

So,

there exists xn ∈ X such that sup f (X)− 1
n
< f (xn)≤ sup f (X) in R.

Thus, we obtain a sequence {xn}n∈N in X ⊆R. By the Archimedean property of R, f (xn)→ sup f (X) in R. By
the monotone subsequence theorem (Theorem 2.15), there exists a subsequence {xnk}k∈N which is monotone.
Since X is a bounded interval and by the least upper bound property of R, this monotone subsequence converges
in R, i.e.

there exists x ∈ R such that {xnk}k∈N → x as k → ∞.

Since X is a closed interval, then x ∈ X . By continuity of f , we have f (xnk) → f (x) in R. By uniqueness of
limits (Theorem 2.1), we have f (p) = sup f (X) in R and the result follows.

Example 4.26 (Bartle and Sherbert p. 140 Question 1). Let I = [a,b] and let f : I → R be a continuous
function such that f (x)> 0 for each x in I. Prove that there exists

a number α > 0 such that f (x)≥ α for all x ∈ I.

Solution. Since f is continuous on the closed interval [a,b], by the extreme value theorem, it attains both a
maximum and a minimum on [a,b]. In other words, there exists x0 ∈ [a,b] such that

f (x0) = min{ f (x) : x ∈ [a,b]} .

Since f (x)> 0 for all x ∈ [a,b], then α = f (x0)> 0. Thus, for any x ∈ [a,b], we have f (x)≥ α . □
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Example 4.27 (Bartle and Sherbert p. 140 Question 13). Suppose that

f : R→ R is continuous on R and lim
x→−∞

f (x) = 0 and lim
x→∞

f (x) = 0.

Prove that f is bounded on R and attains either a maximum or minimum on R. Give an example to show that
both a maximum and a minimum need not be attained.

Solution. We first prove that f is bounded on R. By the formal definition of a limit, for every ε > 0, there exists
M > 0 such that whenever x > M, we have | f (x)| < ε . In particular, we can choose ε = 1. Next, since f is
continuous on R, it is also continuous on the compact interval [−M,M] (consider both limits). By the extreme
value theorem (Theorem 4.1), f is bounded on [−M,M], so f is bounded on R, and the result follows.

Indeed, both a maximum and a minimum need not be attained as seen from the function f (x) = e−x2
which

only has a maximum point at x = 0. □

Theorem 4.2 (intermediate value theorem). Let X ⊆ R be any interval in R. Let f : X → R be a
continuous function on X . Suppose

a,b ∈ X such that f (a)≤ f (b) in R.

Then, for all t ∈ R (secretly connoting the intermediate value) with

f (a)≤ t ≤ f (b) there exists p ∈ X such that f (p) = t in R (Figure 13).

Again, we make some remarks regarding the intermediate value theorem (Theorem 4.2).
(i) The continuity of f is necessary. To see why, suppose

f : [−1,1]→ R where f (x) =

2 if x ≥ 0;

−2 if x < 0

which is not a continuous function. Then, f does not attain the intermediate values between −2 and 2.
(ii) Next, X must be an interval. Suppose otherwise, then for example, we have

f : [−1,1]\{0}→ R where f (x) = x

is not an interval so f does not attain the intermediate value 0.
(iii) Lastly, the least upper bound property of R is necessary. To see why, consider

f : [0,2]∩Q→ R where f (x) = x2

which is a continuous function but it does not attain the intermediate value 2 between 0 and 4.
We now prove the intermediate value theorem (Theorem 4.2).

Proof. Suppose we have an interval X ⊆ R and a continuous function f : X → R. Fix a,b ∈ X and t ∈ R
such that f (a) ≤ t ≤ f (b). We wish to show that there exists p ∈ X such that f (x) = t in R. Without loss of
generality, one may assume that a ≤ b in X ⊆ R.

Consider
E = {x ∈ [a,b] : f (x)≤ t} ⊆ R.

Since f (a)≤ t, then a ∈ E, so E ̸= /0. Also, E is bounded above by b. By the least upper bound property of R,
there exists p = supE in R. Then, a ≤ p = sup(E)≤ b. Since X is an interval, then we have [a,b]⊆ X , so p ∈ X .
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1 2

−2

4

f (1) =−2

f (2) = 4

(p, t)
x

f (x)

Figure 13: Graphical interpretation of the intermediate value theorem

We claim that f (p) = t. For each n ∈ N, note that p− 1
n ∈ R is not an upper bound of E, so

there exists pn ∈ E such that p− 1
n
< pn ≤ p in R.

Thus, we obtain a sequence {xn}n∈N in E ⊆ [a,b] ⊆ X , which implies that for all n ∈ N, f (pn) ≤ t. By the
Archimedean property of R, we have xn → x in X . By continuity of f , we have f (xn) → f (x) in R. Hence,
f (p)≤ t in R.

Suppose on the contrary that f (p)< t. Then, ε = t − f (p)> 0. By continuity of f ,

there exists δ > 0 such that for all x ∈ [a,b] with |x− p|< δ then | f (x)− f (p)|< ε.

As such, f (x)+ f (p)+ ε . So, a ≤ p ≤ b.

Suppose on the contrary that p < b, then we can choose x ∈ [a,b[ such that p < x < p+δ . Then, f (x)< t, so
x ∈ E by definition of E, but x > p = sup(E), which is a contradiction. Also, if p = b, then

f (b) = f (p)< t ≤ f (b)

which again, is a contradiction. Hence, we must have f (p) = t in R.

Example 4.28 (Bartle and Sherbert p. 140 Question 4). Show that every polynomial of odd degree with
real coefficients has at least one real root.

Solution. Let
p(x) = a0 +a1x+a2x2 + . . .+anxn where n is odd.

If an > 0, then

lim
x→∞

p(x) = ∞ since the leading term dominates the other expressions.

Also,
lim

x→−∞
p(x) =−∞ since n is odd.

On the other hand, if an < 0,
lim
x→∞

p(x) =−∞ and lim
x→−∞

p(x) = ∞.

By the intermediate value theorem (Theorem 4.2), p(x) has at least one root in R. □
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Example 4.29 (MA2108 AY19/20 Sem 1). Let f be continuous on [0,1] and f (0) = f (1). Prove that for any
positive integer n, there exists a ζ ∈ [0,1] such that

f
(

ζ +
1
n

)
= f (ζ ).

Solution. Define

g(x) = f
(

x+
1
n

)
− f (x).

By the intermediate value theorem (Theorem 4.2), g does not experience a change in its polarity for all x∈ [0,1].
Suppose on the contrary that this claim is false. Then, by the method of differences,

n

∑
i=1

g
(

1− i
n

)
= f

(
1
n

)
− f (0) so g(0) = f

(
1
n

)
− f (0).

Without a loss of generality, assume that g(x) > 0 for all x ∈ [0,1]. Then, setting n = 1, it implies that f (1)−
f (0)> 0, which is a contradiction! □

Example 4.30 (Bartle and Sherbert p. 140 Question 3). Let I = [a,b] and let f : I → R be a continuous
function on I such that for each x in I there exists y in I such that | f (y)| ≤ 1

2 | f (x)|. Prove

there exists a point c ∈ I such that f (c) = 0.

Solution. Suppose on the contrary that no such c exists. That is to say, without loss of generality, f (c)> 0 for
all c ∈ [a,b], otherwise it would contradict the continuity of f .

Choose an arbitrary point x0 ∈ [a,b]. By the hypothesis, there exists x1 ∈ [a,b] such that

| f (x1)| ≤
1
2
| f (x0)| .

Similarly, there exists x2 ∈ [a,b] satisfying

| f (x2)| ≤
1
2
| f (x1)| ≤

1
22 | f (x0)| .

Inductively, we obtain a sequence {xn}n∈N ⊆ [a,b] such that

| f (xn)| ≤
1
2n | f (x0)| for all n ∈ Z≥0.

By the Bolzano-Weierstrass theorem†, {xn}n∈N has a convergent subsequence. Let {xnk}k∈N be such that xnk → c
for some c ∈ [a,b]. Since f is continuous, then

f (c) = lim
k→∞

f (xnk)≤ lim
k→∞

1
2nk

f (x0) = 0.

It follows that f (c) = 0. The existence of a point c ∈ I such that f (c) = 0 contradicts our assumption that
f (x)> 0 for all x ∈ I. Therefore, our initial assumption is false. □

4.4
Special Functions

†This inherently uses the Heine-Borel theorem since I = [a,b] is a closed and bounded interval.
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Definition 4.13 (Dirichlet function). Named after mathematician Peter Gustav Lejeune Dirichlet, the
Dirichlet function, f (x), is defined to be the following:

f (x) =

{
1 if x ∈Q;
0 if x /∈Q

It is an example of a function that is nowhere continuous.

Theorem 4.3. The Dirichlet function is nowhere continuous.

Proof. Suppose x ∈Q, so f (x) = 1. We show that f is discontinuous at x. Let δ > 0 be arbitrary and y ∈Q such
that |x−y|< δ . Choose ε = 1/2. Without a loss of generality, assume x < y. Since there exists z ∈Q′ such that
x < z < y (due to the density of the irrationals in the reals), then

| f (x)− f (z)|= |1−0|= 1 >
1
2
= ε.

In a similar fashion, we now consider the case where x > y. There exists z′ ∈Q′ such that y < z′ < x, so

| f (x)− f (z′)|= |1−0|= 1 > 1/2 = ε.

Therefore, if x ∈Q, f is discontinuous at x. For the case where x ∈Q′, the proof is very similar.

Lemma 4.3. The Dirichlet function can be constructed as the double limit of a sequence of continuous
function. That is,

f (x) = lim
m→∞

lim
n→∞

cos2n(m!πx) =

{
1 if x ∈Q;
0 if x /∈Q.

We then discuss Thomae’s function (Definition 4.14), which is named after Carl Johannes Thomae, and the
function is also known as the popcorn function due to its nature.

Definition 4.14 (Thomae’s function). Thomae’s function can be defined as follows:

f : R→ [0,1] where f (x) =

0 if x /∈Q;

1/q if x = p
q , p,q ∈ N and gcd(p,q) = 1

It is a well-known fact that Thomae’s function is not continuous at all rational points but continuous at all
irrational points.

4.5
Uniform Continuity

Definition 4.15 (uniform continuity). Let I ⊆R be an interval and f : I →R. f is uniformly continuous
on I if for every ε > 0, there exists δ > 0 such that

for any x,y ∈ I |x− y|< δ implies | f (x)− f (y)|< ε.

Corollary 4.3. If a function is uniformly continuous on I, then it is continuous on I.
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Example 4.31. We claim that f (x) = x2 is uniformly continuous on [0,1]. To see why, let ε > 0 be arbitrary.
Choose δ = ε/2. For x,y ∈ [0,1], suppose |x− y|< δ . Then,

| f (x)− f (y)|= |x2 − y2|= |x+ y||x− y|< 2 ·δ = ε

and we are done.

Theorem 4.4. A function f is uniformly continuous on I if and only if f ′ is bounded.

It is worth noting that f (x) = x2 is uniformly continuous on [a,b] in general, where a,b ∈ R, but it is not
uniformly continuous on R!

Example 4.32 (MA2108 AY19/20 Sem 1). Prove that the function f (x) =
√

x2 − x+1 is uniformly
continuous on [1,∞)†.

Solution. Since
f ′(x) =

1
2
(
x2 − x+1

)−1/2 · (2x−1) =
2x−1

2
√

x2 − x+1
,

and noting that x2 − x+1 > 0 for all x ∈ [1,∞), as well as | f ′(x)|< 1, by Theorem 4.4, the result follows. □

Theorem 4.5 (sequential criterion for uniform continuity). f : I → R is uniformly continuous on I if
and only if for any two sequences xn,yn ∈ I such that

if lim
n→∞

(xn − yn) = 0 then lim
n→∞

[ f (xn)− f (yn)] = 0.

Definition 4.16 (Lipschitz continuity). Let I be an interval and f : I → R satisfies the Lipschitz
condition on I. Then, there is K > 0 such that

| f (x)− f (y)| ≤ K|x− y|, for all x,y ∈ I.

Theorem 4.6. If a function is Lipschitz continuous on I, then it is uniformly continuous on I.

Example 4.33. We verify that f (x) = x2, in the interval [0,1], satisfies the Lipschitz condition.

Solution. Since f (x)− f (y) = x2 − y2, then∣∣∣∣ f (x)− f (y)
x− y

∣∣∣∣= ∣∣∣∣x2 − y2

x− y

∣∣∣∣= |x+ y| ≤ 2,

and since 2 > 0, f (x) = x2, in [0,1], is said to satisfy the Lipschitz condition. In other words, f is Lipschitz
continuous. □

Theorem 4.7. If f : I → R is uniformly continuous on I and xn is Cauchy, then f (xn) is Cauchy.

If the function f : (a,b)→ R is uniformly continuous on (a,b), then f (a) and f (b) can be defined so that
the extended function is continuous on [a,b].

Example 4.34. Let f : [1,∞)→ R be a uniformly continuous function. Prove that

there exists M > 0 such that for all x ≥ 1 we have | f (x)| ≤ Mx.
†The original question had an error. It used f (x) =

√
x(x−1), which is undefined at x = 1. Confirmed the change with one of the

students.
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Solution. Since f is uniformly continuous, then for every ε , there exists δ > 0 such that for every x,y ≥ 1,
whenever |x− y| < δ , we have | f (x)− f (y)| < ε . Consider 1 ≤ x1 < x2 < .. ., so by uniform continuity, we
have

|xk+1 − xk|< δ implies | f (xk+1)− f (xk)|< ε for all k ∈ N.

Let x1 = 1 and xn = x. Then,

| f (x)− f (1)|=

∣∣∣∣∣n−1

∑
k=1

f (xk+1)− f (xk)

∣∣∣∣∣≤ n−1

∑
k=1

| f (xk+1)− f (xk)|< (n−1)ε,

where we used the triangle inequality. So,

f (1)− (n−1)ε < f (x)< f (1)+(n−1)ε

Without loss of generality, suppose | f (1)− (n−1)ε|< | f (1)+(n−1)ε| so

| f (x)|< | f (1)+(n−1)ε|< | f (1)|+ |(n−1)ε|

We can choose ε = 1 so

| f (x)|< | f (1)|+n−1.

Note that the number of increments n−1 is at most ⌈(x−1)/δ⌉, so

| f (x)|< | f (1)|+
⌈
(x−1)

δ

⌉
≤ | f (1)|+ x

δ
.

□
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Chapter 5
Topology

5.1
Introduction

Definition 5.1 (topology). A topology on a set X is a collection T of subsets of X having the following
properties:

(i) /0,X ∈ T
(ii) The union of the elements of any subcollection of T is in T

(iii) The intersection of the elements of any finite subcollection of T is in T

Definition 5.2 (open set). Let X be a set. Then,

a subset U ⊆ X is an open set of X if U belongs to the collection T .

Example 5.1 (discrete topology). Let X = {a,b} be a set. If a space has the discrete topology, then every
subset of a set is considered an open set, i.e. T = P (X), the power set of X .

Example 5.2 (trivial topology). Again, let X = {a,b} be a set. If a space has the trivial topology, then the
only open sets are and the whole space, i.e. T = { /0,X}.

Note that albeit uninteresting, if X = /0 or X = {a} a singleton, then X has a unique topology, which is both
discrete and trivial.

Example 5.3 (finite complement topology). The finite complement topology, T f , is defined as follows:

T f = {all subsets U of X such that X \U is finite or all of X} .

Example 5.4 (intersection of topologies). Let F = {Ti}i∈I be a non-empty family of topologies on X , where
I is some indexing set. Then, their intersection, denoted by⋂

i∈I

Ti is also a topology on X .

Let S ⊆ P (X) be any collection of subsets of X . Then, the family FS consisting of all topologies T on X
with S ⊆ T is always non-empty, i.e.

TS = {all T ⊆ P (X) : T is a topology on X and S ⊆ T } .

The intersection over this family FS is a topology T (S) on X , and it is known as the topology generated by S .
It is the smallest topology on X in which every member of S is open.

Example 5.5. For any S ⊆ { /0,X} in P (X),

T (S) is the trivial topology and it is denoted by { /0,X} .

Example 5.6. For
S = {all singletons {x} ∈ P (X) : x ∈ X} ,

we note that
T (S) is the discrete topology P (X) .
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Proposition 5.1 (basis for a topology). Let B be a collection of subsets of X such that the following
hold:

(i) For each x ∈ X , there is at least one B ∈ B such that x ∈ B
(ii) If B1,B2 ∈ B and x ∈ B1 ∩B2, then

there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Then, the topology T (B) generated by B is as follows: a subset U of X is open if and only if

for every x ∈U there exists B ∈ B such that x ∈ B and B ⊆U.

We then say that B is a basis for the topology T (B).

Proof. Let T0 denote the set of all subsets U ⊆ X such that for each x ∈ U , there exists B ∈ B with x ∈ B and
B ⊆U . Then, given U ∈ T0, choose B = Bx ∈ B, so

U =
⋃

x∈U

Bx.

Hence, if T is any topology on X with B ⊆ T , then T0 ⊆ T , which shows that T0 ⊆ T (B).

We then prove the reverse inclusion, i.e. T0 ⊇ T (B). It suffices to show that T0 is a topology on X and B ⊆ T0.
Suppose {Uα}α∈J is a family of elements in T0 and

U =
⋃

α∈J

Uα .

Given x ∈ U , there exists an index α ∈ J such that x ∈ Uα . Since Uα ∈ Tα , then there exists B ∈ B such that
x ∈ B ⊆Uα which is ⊆U . Hence, U ∈ T0. By (i) of Proposition 5.1, for all x ∈ X , there exists Bx ∈ B such that
x ∈ Bx ⊆ X , SO X ∈ T0.

Next, suppose U1,U2 ∈ T0. So,

given x ∈U1 ∩U2 choose B1 ∈ B such that x ∈ B1 ⊆U1

choose B2 ∈ B such that x ∈ B2 ⊆U2

By (ii) of Proposition 5.1,

there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2 which is ⊆U1 ∩U2.

Hence, U1 ∩U2 ∈ T0. By induction, for any finite family {Uα}α∈J of elements of T0, we have⋂
α∈J

Uα ∈ T0.

By (iii) of Definition 5.1, it follows that T0 is a topology on X . As such, given B ∈ B, it is clear that for any
x ∈ B, one has x ∈ B ⊆ B, so B ∈ T0. We conclude that B ⊆ T0, so T0 ⊇ T (B).

Corollary 5.1. Let X be a set and B be a basis for a topology T on X . Then,

T is equal to the collection of all unions of elements of B.
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Definition 5.3 (metric topology). Let (X ,d) be a metric space. The metric topology of X with respect
to the metric d is

Td = {Ui ∈ P (X) : for all p ∈U there exists r > 0 such that B(p,r)⊆U} .

That is to say, a subset U ⊆ X is open with respect to the metric topology of X if and only if for all p ∈U ,
there exists r > 0 such that B(p,r)⊆U .

Proposition 5.2. The metric topology (Definition 5.3) is indeed a topology on the metric space X .

Proof. It is clear that /0,X ∈ Td . Next, suppose {Ui}i∈I is any collection in Td . Define

U =
⋃
i∈I

Ui.

We wish to prove that U ∈ Td . If p ∈ U , then there exists i ∈ I such that p ∈ Ui is open, so there exists r > 0
such that B(p,r)⊆Ui ⊆U . It follows that U ∈ Td (i.e. arbitrary union is contained in the topology).

Then, suppose {Ui}1≤i≤n is a finite collection in Td . We wish to show that this finite union is also contained in
the topology Td . Define

U =
n⋂

i=1

Ui.

If p ∈ U , then for all 1 ≤ i ≤ n, one has p ∈ Ui being open in the metric topology, so there exists ri > 0 such
that B(p,ri)⊆Ui. Define r = min{ri : 1 ≤ i ≤ n}> 0 since I is finite. Then, for all i ∈ I, one has B(p,r)⊆Ui

so B(p,r)⊆U . It follows that U ∈ Td .

Lemma 5.1. For all p ∈ X and r > 0, the open ball B(p,r) is indeed open with respect to the metric
topology.

Proof. We wish to show that for every q ∈ B(p,r), there exists d > 0 such that B(q,d) ⊆ B(p,r). Since q ∈
B(p,r), then d (q, p)< r so d = r−d (q, p)> 0. We claim that for this d > 0, we indeed have B(q,d)⊆ B(p,r).

d(q, p)

dq

p r
B(p,r)

B(q,d)

To see why the above claim holds, let x ∈ B(q,d) so d (x,q)< d. By the triangle inequality, we have

d (x, p)≤ d (x,q)+d (q, p)< d +(r−d) = r.
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By the hypothesis, we mentioned that d (x,q)< d, and by definition, d (q, p) = r−d so indeed, d (x, p)< r. We
conclude that x ∈ B(p,r).

Example 5.7 (basis for metric topology). Let (X ,d) be a metric space (here, X is a set and d is a metric). A
basis for the metric topology of X with respect to d is

B = {all open balls in X}= {B(p,r) ∈ P (X) : p ∈ X ,r > 0} .

The notation B(p,r) here refers to an open ball of radius r centred at p.

We now relate to statements (i) and (ii) in Proposition 5.1. For (i), it is clear that for all x ∈ X , there exists
B ∈ B such that x ∈ B. Namely, we can choose B = B(x,1). In fact, the number 1 can be replaced by any
positive number.

As for (ii), we need to show that if B1,B2 ∈B and x∈B1∩B2, then there exists B3 ∈B such that x∈B3 ⊆B1∩B2.
Here, we can take B1 = B(p1,r1) and B2 = B(p2,r2). Then, we can set

r = min{r1 −d (x, p1) ,r2 −d (x, p2)}> 0 and B3 = B(x,r) .

r = {r1 −d (x, p1) ,r2 −d (x, p2)}

x

p1

r1
B1 = B(p1,r1)

p2 r2
B2 = B(p2,r2)

B3 = B(x,r)

If y ∈ B3, then for all i = 1,2, by the triangle inequality, we have

d (y, pi)≤ d (y,x)+d (x, pi)< r+d (x, pi)≤ ri.

As such, x ∈ B3 ⊆ B1 ∩B2.

From Example 5.7, we say that a subset U ⊆ X is open with respect to the metric topology of d if and only
if for each x ∈ U , there exists B ∈ B such that x ∈ B and B ⊆ U . Equivalently, U can be written as a union of
open balls.
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5.2
The Topological Notion of Continuity

Definition 5.4 (continuity). Let X and Y be topological spaces. A function f : X → Y is said to be
continuous if for each open subset V of Y , the set f−1 (V ) is an open subset of X .

Proposition 5.3. Let X be a topological space. The identity map idX : X → X is continuous.

Proof. For any open V ⊆ X , note that id−1
X (V ) =V is open in X , so idX is continuous.

Proposition 5.4. Let X ,Y,Z be topological spaces, if

if f : X → Y and g : Y → Z are continuous then g◦ f : X → Z is continuous.

Proof. For any open W ⊆ Z, we have (g◦ f )−1 (W ) = f−1
(
g−1 (W )

)
. Note that g−1 (W ) is open in Y by

continuity of g; f−1 (·) is open in X by continuity of f . We conclude that g◦ f is also continuous.

Example 5.8 (trivial topology). Suppose the topology of Y is trivial, i.e. TY = { /0,Y}. Then, for any
topological space X , any map f : X → Y from X to Y is continuous. As a consequence,

for any topological space X the unique map X →{·} to a singleton is continuous.

This is because we can set f−1 ( /0) = /0 and f−1 (Y ) = X .

Example 5.9 (discrete topology). Suppose the topology of X is discrete, i.e. TX = P (X). Then, for any
topological space Y , any map f : X → Y from X to Y is continuous because for any open V ⊆ Y , f−1 (V )⊆ X .
This implies that f−1 (V ) is open in X . As a consequence,

for any topological space Y any map {·} → Y from a singleton is continuous.

That is to say, the unique map /0 → Y from the empty set is continuous.

Proposition 5.5. Suppose (X ,dX) and (Y,dY ) are metric spaces given with the metric topology. Then,
by the open set criterion for continuity,

a map f : X → Y is continuous with respect to the metric topologies dX and dY if and only if

it is continuous with respect to the metrics dX and dY

Proof. For the reverse direction, suppose f : X →Y is continuous with repsect to the metrics dX and dY , i.e. for
all p ∈ X and ε > 0, there exists δ > 0 such that

for all x ∈ X with dX (x, p)< δ we have dY ( f (x) , f (p))< ε.

We wish to show that for any open set V ⊆ Y , the set f−1 (V )⊆ X is open. Let V ⊆ Y be an open set in Y . Let
p ∈ f−1 (V ) be arbitrary, so f (p) ∈V . Since V ⊆ Y is open, then there exists ε > 0 such that B(F (p) ,ε)⊆V .
By continuity with respect to the metrics dX and dY , it implies that

f (BX (p,δ ))⊆ BY ( f (p) ,ε) which is ⊆V.

That is to say, BX (p,δ )⊆ f−1 (V ) as desired.
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As for the forward direction, suppose f : X → Y is continuous with respect to the metric topologies dX and
dY , i.e.

for any open V ⊆ Y the set f−1 (V )⊆ X is open.

We wish to show that for any p ∈ X and ε > 0, there exists δ > 0 such that for all x ∈ X with dX (x, p)< δ , one
has dY ( f (x) , f (p))< ε . Let p ∈ X and ε > 0 be given. Then, f (p) ∈Y and V = BY ( f (p) ,ε) is open in Y . As
mentioned, by the open set crtierion for continuity, the set f−1 (V ) ⊆ X is open and p ∈ f−1 (V ) by definition
of V .

Hence, there exists δ > 0 such that BX (p,s)⊆ f−1 (V ). That is to say, f (BX (p,δ ))⊆V , i.e. for any x ∈ X with
dX (x, p)< δ , one has f (x)∈V =BY ( f (p) ,ε). In other words, dY ( f (x) , f (p))< ε , and the result follows.

Example 5.10 (Munkres p. 112 Question 2). Let F : X ×Y → Z. We say that F is continuous in each variable
separately if

for each y0 ∈ Y the map h : X → Z defined by h(x) = F (x,y0) is continuous and

for each x0 ∈ X the map k : Y → Z defined by k (y) = F (x0,y) is continuous

Show that if F is continuous, then F is continuous in each variable separately.

Solution. We first show continuity in the x-variable. Fix y0 ∈ Y . Consider the map h(x) = F (x,y0). Take
an arbitrary point x0 in X . We must show that h is continuous at x0. Let U ⊆ Z be an open set containing
h(x0) = F(x0,y0). Since F is continuous, for the open set U containing F(x0,y0), there exists an open
neighbourhood V ⊂ X ×Y of (x0,y0) such that F (V )⊆U .

As such, there exist open sets A ⊆ X and B ⊆ Y with x0 ∈ A and y0 ∈ B such that A×B ⊆ Y . Since y0 ∈ B, for
any x ∈ A we have (x,y0) ∈ A×B ⊆V , so F (x,y0) = h(x) ∈U . This shows that h is continuous at x0. Similarly,
one can prove continuity in the y-variable. □

Example 5.11 (Munkres p. 112 Question 12). Let F : R×R→ R be defined by the equation

F(x,y) =


xy

x2 + y2 if (x,y) ̸= (0,0) ;

0 if (x,y) = (0,0) .

(a) Show that F is continuous in each variable separately.
(b) Compute the function g : R→ R defined by g(x) = F(x,x).
(c) Show that F is not continuous.

Solution.
(a) Recall the definition in Example 5.10. As F is symmetric, it suffices to show that for each y0 ∈ R,

h : R→ R defined by h(x) =
xy0

x2 + y2
0

is continuous.

Since y0 ̸= 0, then h can be regarded as a quotient of polynomials (i.e. h is a rational function). Hence, h
is a continuous function.

(b) g(x) = x2

2x2 =
1
2 .

(c) We have

lim
(x,x)→(0,0)

x · x
x2 + x2 =

1
2

but lim
(x,0)→(0,0)

x ·0
x2 +02 = 0

so F is not continuous at (0,0).
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5.3
Homeomorphisms

Definition 5.5 (homeomorphism). Let X and Y be topological spaces. A continuous map f : X →Y is
a homeomorphism if and only if

there exists a continuous map g : Y → X such that g◦ f = idX and f ◦g = idY .

If g exists, it is unique and called the inverse map of f , denoted by f−1. The topological spaces X and Y
are homeomorphic if and only if there exists a homeomorphism f : X → Y .

Properties of topological spaces which are invariant under homeomorphisms are called topological spaces.

Example 5.12. Let X = Y = R, a ∈ R\{0}, and b ∈ R. Then,

f : X → Y given by f (x) = ax+b is a homeomorphism.

The inverse map

f−1 : Y → X is given by f−1 (y) =
1
a
(y−b) .

x

y f (x) = ax+b

f−1 (y) = 1
a(y−b)

y = x(x0,y0)

(y0,x0)

Similarly, if X = [0,1] and Y = [b,a+b], where a > 0, X and Y are homeomorphic.

Example 5.13. Let X = (−1,1) and Y = R. Then,

f : X → Y given by f (x) =
x

1−|x|
is a homeomorphism.

The inverse map

f−1 : Y → X is given by f−1 (y) =
y

1−|y|
.

So, (−1,1) and R are homeomorphic.

At this juncture, we know that a homeomorphism is bijective, so cardinality is a topological property.
However, there are bijective continuous maps which are not homeomorphisms! For example, let S1 denote the
unit circle in R2. That is,

S1 =
{
(x,y) ∈ R2 : x2 + y2 = 1

}
.

Then, define

f : [0,1)→ S1 where f (t) = (cos2πt,sin2πt) .
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x

y

f (t) = (cos2πt,sin2πt)

The topology of [0,1) is very different from that of S1 — S1 is compact (Definition 5.11) and connected
(Definition 5.8) but [0,1) is not compact! Alternatively, one can consider the discontinuity of the inverse
function f−1 : S1 → [0,1) which tries to unwrap the circle into a line segment. But imagine what happens
near the point f (0) = (1,0). On the circle, if one goes slightly clockwise or slightly counter-clockwise from
(1,0), the t-values near those points are near 0 and 1 respectively. However, 1 is not in the domain! So, f−1 has
a discontinuity at (1,0). Therefore, the inverse is not continuous, which implies f is not a homeomorphism.

Example 5.14 (Munkres p. 157 Question 1). Show that no two of the spaces (0,1), (0,1], and [0,1] are
homeomorphic.
Hint: What happens if you remove a point from each of these spaces?

Solution. We can distinguish these spaces by examining their cut-points. These refer to points whose removal
disconnects the space. This is a topological property preserved by homeomorphisms.

For (0,1), take x ∈ (0,1). Removing x from (0,1) yields

(0,1)\{x}= (0,x)∪ (x,1) .

Both (0,x) and (x,1) are open and non-empty, and they are disjoint. Hence, the space is disconnected. In other
words, every point of (0,1) is a cut point.

Next, for (0,1], consider the point 1. Removing 1 yields (0,1] \ {1} = (0,1), which as an interval in R is
connected. So, 1 is not a cut-point. As such, in (0,1], at least one point is not a cut-point.

Lastly, we deal with the closed interval [0,1]. Consider one of the endpoints, say 0. Removing 0 yields
[0,1]\{0}= (0,1] which is still connected. So, 0 is not a cut-point. The same holds for the point 1.

In conclusion, in (0,1), every point is a cut-point; in (0,1], there is at least one point that is not a cut-point; in
[0,1], there are at least two points that are not cut-points. Since the property of ‘every point being a cut point’ is
a topological invariant (it must be preserved by any homeomorphism), no homeomorphism can exist between
(0,1) and either (0,1] or [0,1]. Similarly, because the number of non-cut points differs, (0,1] and [0,1] cannot
be homeomorphic. The result follows. □

Example 5.15 (Munkres p. 157 Question 1). Show Rn and R are not homeomorphic if n > 1.

Solution. If we remove a single point x ∈ Rn, then the remaining set is still connected. However, if we remove
a single point x ∈ R, then the remaining set is disconnected. □

Example 5.16 (Munkres p. 158 Question 2). Let f : S1 →R be a continuous map. Show there exists a point
x of S1 such that f (x) = f (−x)†.

†This is the Borsuk-Ulsam theorem for n = 1.
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Solution. Here, S1 denotes the unit circle in R2. Define g(x) = f (x)− f (−x). Then, g(−x) =−g(x) so g is an
odd function on the circle.

We then parametrise S1 using θ so that every point on the circle can be written as

x(θ) = (cosθ ,sinθ) where 0 ≤ θ ≤ 2π.

In particular, x(θ +π) = −x(θ). Define h(θ) = g(x(θ)). Since h is a composition of continuous functions,
then it is also continuous. We see that

h(0) = g(x(0)) = f (x(0))− f (x(π))

and
h(π) = f (x(π))− f (x(2π)) = f (x(π))− f (x(0)) =−h(0) .

Since h(0) and h(π) are negatives of each other, either h(0) = 0 (for which the result follows) or h(0) = h(π).
For the latter case, by the intermediate value theorem, there exists θ0 ∈ (0,π) such that h(θ0) = 0. As such,
f (x(θ0)) = f (−x(θ0)). That is to say, there exists a point x ∈ S1 such that f (x) = f (−x). □

Example 5.17 (Munkres p. 158 Question 3). Let f : X → X be continuous. Show that if X = [0,1], there is
a point x such that f (x) = x.

Solution. Define g(x)= f (x)−x. Then, g is continuous. Since 0≤ f (0) , f (1)≤ 1, then g(0)≥ 0 and g(1)≤ 0,
so by the intermediate value theorem, there exists k ∈ (0,1) such that g(k) = 0, i.e. f (k) = k. □

5.4
The Subspace Topology

Definition 5.6 (subspace topology). Let X be a topological space with topology T . If Y ⊆ X ,

TY = {Y ∩U : U ∈ T } is a topology on Y

and it is called the subspace topology of Y induced by X .

We shall prove that the subsapce topology is indeed a topology.

Proof. We have
(U1 ∩Y )∩ . . .(Un ∩Y ) = (U1 ∩ . . .∩Un)∩Y

so the finite intersection U1 ∩ . . .∩Un is contained in the topology. Moreover, the arbitrary union

⋃
α∈J

(Uα ∩Y ) =

(⋃
α∈J

Uα

)
∩Y

is contained in the topology as well.

Unless otherwise stated, any subset of a topological space is given the subspace topology.

Lemma 5.2. If A is a subspace of X ,

the inclusion function j : A → X is continuous.
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Proof. For any open U ⊆ X , one has j−1 (U) = U ∩A. By the definition of the subspace topology (Definition
5.6), U ∩A is open in A.

Example 5.18. If f : X →Y is continuous and if A⊆X is a subspace of X , then the restriction map f |A : A→Y
is continuous because

A Y

X

f |A

j f
commutes.

Here, j : A ↪→ X is the inclusion map, which is continuous by the definition of the subspace topology. Since
f = f |A ◦ j, and both f and j are continuous, it follows that f |A is continuous.

Example 5.19. Let f : X →Y be continuous. If Z is a space having Y as a subspace, then the function h : X → Z
obtained by expanding the range of f is continuous because

Y

X Z

jf

h

commutes.

Proposition 5.6 (universal property of the subspace topology). Let X be a subspace topology and let
A⊆X be a subset given with the subspace topology. For any topological space T and any map f0 : T →A,

f0 : T → A is continuous if and only if j ◦ f0 : T → X is continuous.

Proof. Since A is given the subspace topology and j is continuous, then f0 is continuous. So, j◦ f0 is continuous
as the composition of continuous maps is also continuous.

A X

T

j

f0

j◦ f0

Conversely, if j ◦ f0 is continuous, then by definition of the subspace topology of A,

for all open V ⊆ A there exists open U ⊆ X such that V = A∩U = j−1 (U) .

Hence,

f−1
0 (V ) = f−1

0

(
j−1 (U)

)
= f−1 (U) is open in T,

so we conclude that f0 is continuous.

5.5
Connectedness

Definition 5.7 (separation). Let X be a topological space. A separation of X is a pair U,V of disjoint
non-empty open subsets of X whose union is X .
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Definition 5.8 (connectedness). Let X be a topological space. Then, the space X is said to be connected
if and only if there does not exist a separation of X . That is to say,

for all open U,V of X such that U ∩V = /0 and U ∪V = X either U = /0 or V = /0.

In other words, the only subsets of X that are both open and closed in X are /0 and X .

Example 5.20. Suppose the topology of X is trivial. Then, X is connected implies that any topological space
X such that X is empty or a singleton is connected.

Example 5.21. Suppose the topology of X is discrete. Then,

X is connected if and only if X is empty or a singleton.

From Examples 5.20 and 5.21, we see that connectedness for a topological space X generalises the notion
of ‘being empty or a singleton’ for a set.

Also, note that subspaces of a connected space need not be connected (Examples 5.22 and 5.23).

Example 5.22. For example, R\{0} with the subspace topology is not connected. To see why, take (−∞,0)
and (0,∞) to be disjoint non-empty open sets whose union is R\{0}.

Example 5.23. Also, Q ⊆ R with the subspace topology is not connected. To see why, for any irrational
α ∈ R\Q,

(−∞,α)∩Q and (α,∞)∩Q are disjoint non-empty open sets whose union is Q.

Theorem 5.1 (image of connected space under continuous map is connected). If f : X → Y is a
continuous map and X is connected, then f (X) given with the subspace topology from Y is connected.

Proof. Consider the map

f0 : X ↠ f (X) where f0 (x) = f (x) .

Here, ↠ means that f0 is surjective. By the universal property of the subspace topology (Proposition 5.6), f0 is
continuous and surjective so one may replace Y and f by f (X) and f0 respectively.

f (X) Y

X

i

f0

f

Without loss of generality, one may assume that f : X ↠ Y is continuous and surjective. So, it suffices to show
that X connected implies Y connected. We shall prove this result.

Let U and V be open subsets of Y such that

U ∩V = /0 and U ∪V = Y.

We wish to prove that one of U,V is empty. Since f is continuous, then f−1 (U) and f−1 (V ) are open subsets
of X and

f−1 (U)∪ f−1 (V ) = f−1 (U ∪V ) = f−1 (Y ) = X and f−1 (U)∩ f−1 (V ) = f−1 (U ∩V ) = f−1 ( /0) = /0.

Since X is connected, either f−1 (U) = /0 or f−1 (V ) = /0. Next, since f is surjective, then U = f
(

f−1 (U)
)

or
V = f

(
f−1 (V )

)
, where either U or V is empty.
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Corollary 5.2 (connectedness is a topological property). If X and Y are homeomorphic topological
spaces, then

X is connected if and only if Y is connected.

Theorem 5.2 (classification of connected subspaces of R). Let I ⊆ R be any subset of R. Then, the
following are equivalent:

(i) I is connected
(ii) I is convex, i.e. for all x,y ∈ I such that x ≤ y, we have [x,y]⊆ I

(iii) I is an interval, i.e. one of he following:

(a,b) ,(a,b] , [a,b) , [a,b] ,(−∞,b) ,(−∞,b] ,(a,∞) , [a,∞) or /0 or R= (−∞,∞) .

Definition 5.9 (convexity). A subset of the Euclidean plane E ⊆ Rk is

convex if and only if for any x,y ∈ E one has [x,y]⊆ E.

Here, [x,y] =
{

λx+(1−λ )y ∈ Rk : λ ∈ [0,1]
}

.

Proposition 5.7. Convex subsets of Euclidean spaces are connected.

5.6
Compactness

Definition 5.10 (cover and open cover). Let X be a topological space. A collection A of subsets of a
space X is said to cover X or a covering of X if and only if the union of the elements of A is equal to X .
That is to say

X =
⋃

U∈A
U.

It is called an open covering if and only if its elements are open subsets of X .

Definition 5.11 (compactness). A topological space X is said to be compact if and only if every
open covering A of X reduces to a finite subcollection that also covers X . That is to say, for any family
{Uα}α∈A of open subsets of X such that

X =
⋃

α∈A
Uα ,

there exists a finite subset A0 ⊆A such that

X =
⋃

α∈A0

Uα =Uα1 ∪ . . .∪Uαn .

Example 5.24. If the topology of X is trivial, then X is compact.
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Example 5.25. If the topology of X is discrete, then

X is compact if and only if X is finite.

To see why, for the forward direction, suppose X is compact and has the discrete topology. Recall Example
5.1, which states that every subset of X is open. In particular, for every x ∈ X , the singleton {x} is open. Now,
consider the open cover

A= {{x} : x ∈ X}

which is an open cover of X because ⋃
x∈X

{x}= X .

Since X is compact, there exists a finite subcover {{x1} ,{x2} , . . . ,{xn}} such that
n⋃

i=1

{xi}= X .

Hence, X = {x1, . . . ,xn}, implying that X is a finite set.

Next, suppose X is finite and has the discrete topology. Let A be any open cover of X . Since every subset
of X is open and X has finitely many elements, we can write X = {x1, . . . ,xn}. For every xi, there exists some
Ai ∈ A such that xi ∈ Ai. So, the finite subcollection {A1, . . . ,An} ⊆ A covers X since every point is covered.
Hence, every open cover has a finite subcover, and X is compact.

Example 5.26. Any finite topological space X is compact.

In essence, compactness for a topological space X generalises the notion of finiteness for a set.

We will see in due course that the compact subsets of R are the closed and bounded subsets of R. That is,
the closed and bounded interval [a,b], where a < b, is compact. However, R is not compact. The reason is as
follows. Consider the open cover {(−n,n)}n∈N of R, which does not reduce to a finite subcover.

Also, note that a subspace of a compact space need not be compact. For example, consider (0,1] with the
subspace topology from [0,1]. We claim that (0,1] is not compact. Let

{(1
n ,1
]}

n∈N be an open cover of (0,1],
which does not reduce to a finite subcover.

Also, Q∩ [0,1] with subspace topology from [0,1] is not compact. To see why, let α be an irrational contained
in [0,1]. Then,

{
Q∩ [0,1]\

[
α − 1

n ,α + 1
n

]}
n∈N is an open cover of Q∩ [0,1] but it does not reduce to a finite

subcover.

Theorem 5.3 (image of compact space under continuous map is compact). If f : X → Y is a
continuous map and X is compact, then f (X) given with the subspace topology from Y is compact.

Proof. Consider the map

f0 : X ↠ f (X) where f0 (x) = f (x) .

By the universal property of the subspace topology (Proposition 5.6), f0 is continuous and surjective so one
may replace Y and f by f (X) and f0 respectively.

f (X) Y

X

i

f0

f
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Without loss of generality, we may assume that f : X ↠Y is continuous and surjective, and show that X compact
implies Y compact. To see why this holds, let {Vα}α∈A be an open cover of Y , so

Y =
⋃

α∈A
Vα .

Then,
{

f−1 (Vα)
}

α∈A is an open cover of X because f is continuous, i.e.

X =
⋃

α∈A
f−1 (Vα) = f−1

( ⋃
α∈A

Vα

)
.

Since X is compact, there exists a finite subset A0 ⊆A such that

X =
⋃

α∈A0

f−1 (Vα) .

Since f is surjective, then

Y =
⋃

α∈A0

Vα

which implies that Y admits a finite subcover as well. We conclude that Y is compact.

Corollary 5.3 (compactness is a topological property). If X and Y are homeomorphic topological
spaces, then

X is compact if and only if Y is compact.

Example 5.27 (Munkres p. 171 Question 3). Show that a finite union of compact subsets of X is compact.

Solution. Let Y1, . . . ,Yn be compact subsets of X . That is to say, for every 1 ≤ i ≤ n and every collection C of
open sets covering Yi, i.e.

Yi =
⋃
S∈C

S,

there exists a finite subcollection Fi ⊆ C such that

Yi =
⋃

S∈Fi

S.

We wish to show that
⋃n

i=1Yi is compact. Consider an arbitrary open cover of the aforementioned union. Since
C covers

⋃n
i=1Yi, it covers each Yi individually. Define

F =
n⋃

i=1

Fi.

Since there are finitely many i and each Fi is a finite set, then F is a finite collection of open sets. It follows
that F is a finite subcover of

⋃n
i=1Yi. □

Example 5.28 (Bartle and Sherbert p. 337 Question 7). Find an infinite collection {Kn : n ∈N} of compact
sets in R such that

the union
∞⋃

n=1

Kn is not compact.

Solution. Define Kn = [−n,n], where n ∈ N. Then, Kn is compact for all n ∈ N. However,

∞⋃
n=1

Kn = lim
N→∞

N⋃
n=1

[−n,n] = R

which is not compact. □
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Example 5.29 (Bartle and Sherbert p. 337 Question 9). Let {Kn}n∈N be a sequence of non-empty compact
sets in R such that

K1 ⊇ K2 ⊇ K3 ⊇ . . . .

Prove that there exists at least one point x ∈ R such that x ∈ Kn for all n ∈ N; that is,
∞⋂

n=1

Kn ̸= /0.

Solution. For each n ∈ N, choose xn ∈ Kn. Then, xn ∈ K1. Since K1 is compact, by the Bolzano-Weierstrass
theorem, there exists a convergent subsequence {xnk}k∈N that converges to some limit x ∈ K1. Fix any m ∈ N.
For large k (i.e. such that nk ≥ m), we have

xnk ∈ Knk ⊆ Km.

As Km is compact (thus closed by the Heine-Borel theorem), it contains the limit of every convergent sequence
of its points. Hence, the limit x must lie in Km. Since m was arbitrary, then x ∈ Km for every m ∈ N. That is to
say

x ∈
∞⋂

m=1

Km.

Therefore, the intersection
∞⋂

n=1

Kn

is non-empty. □

Example 5.30 (Munkres p. 171 Question 4). Show that every compact subspace of a metric space is bounded
in that metric and is closed.

Solution. Let (X ,d) be a metric space, and let K ⊆ X be a compact subspace. We wish to prove that K is
bounded and closed.

We first prove that K is bounded. That is, we need to find some point x0 ∈ X and R > 0 such that

K ⊆ B(x0,R) = {x ∈ X : d (x,x0)< R} .

Pick any point x0 ∈ X . Consider the collection of open balls

{B(x0,n) : n ∈ N},

which form an open cover of X , and hence of K. Since K is compact, there exists a finite subcover

K ⊆
m⋃

i=1

B(x0,ni).

Let R = max{n1, . . . ,nm}. Then K ⊆ B(x0,R), showing that K is bounded.

To show that K is closed, it suffices to show that X \K is open. Let x ∈ X \K. Note that K is compact and
X is a metric space and hence Hausdorff. Recall that compact sets in Hausdorff spaces are closed. For each
y ∈ K, since x ̸= y, we have d(x,y)> 0. The function d(x, ·) : K →R is continuous, and since K is compact, the
function achieves a minimum distance, denoted by

δ = inf{d(x,y) : y ∈ K}> 0.

Then B
(

x, δ

2

)
⊆ X \K, so every point of X \K is an interior point, and X \K is open. Thus, K is closed. □
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Definition 5.12. A subset Y of a topological space X is compact if and only if Y given with the subspace
topology is compact.

Theorem 5.4. Every closed subspace of a compact space is compact.

5.7
Closed Sets

Definition 5.13 (closed set). A subset A of a topological space X is closed if the set X \A is open.

Theorem 5.5. Let X be a topological space. Then, the following conditions hold:
(i) /0 and X are closed

(ii) Arbitrary intersections of closed sets are closed
(iii) Finite unions of closed sets are closed

In (ii) of Theorem 5.5, let Uα and Cα be an open set and a closed set of X respectively. Then,

⋂
α∈A

Cα =
⋂

α∈A
(X \Uα) = X \

⋃
α∈A

Uα ,

where we used de Morgan’s law in the second equality.

Example 5.31 (Bartle and Sherbert p. 332 Question 5). Show that the set N of natural numbers is a closed
set in R.

Solution. It suffices to show that R\N is an open set in R. Let a ∈ R\N be arbitrary. Choose

ε =
1
2

min{⌈a⌉−a,a−⌊a⌋}> 0.

Then, consider the ε-neighbourhood (a− ε,a+ ε) which is strictly trapped between two integers. As such
Vε (a) is an open in R □

Example 5.32 (Bartle and Sherbert p. 332 Question 7). Show that the set Q of rational numbers is neither
open nor closed in R.

Solution. Suppose on the contrary that Q is open in R. Then, there exists ε > 0 such that for any a ∈Q, Vε (a)
only contains rational numbers. However, no such ε exists because the irrational numbers Q′ are dense in R.
So, every open interval in R contains at least one irrational number, contradicting Vε (a)⊆Q. Hence, Q is not
open in R.

We then prove that Q is not closed in R. Suppose on the contrary that Q is closed in R, i.e. R \Q is open
in R. In a similar fashion, by using the fact that Q is dense in R, then every open interval of R contains some
rational numbers. Hence, R\Q is not open in R, so Q is not closed in R. □

Example 5.33 (Bartle and Sherbert p. 332 Question 6). Show that

A =

{
1
n

: n ∈ N
}

is not a closed set but A∪{0} is a closed set in R.
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Solution. For the first part, we note that a set is closed in R if it contains all its limit points. As such, we shall
prove that A has a limit point which is not an element of A. Let xn =

1
n and consider the sequence {xn}n∈N in A.

As
lim
n→∞

xn = lim
n→∞

1
n
= 0,

then it implies that every open interval around 0 contains points of A. As such, 0 is a limit point of A. However,
0 ̸∈ A because every element of A is of the form 1

n , where n ∈ N, so 1
n > 0. Hence, A does not contain all its

limit points, so A is not closed.

We then prove that B = A∪{0} is a closed set in R. Previously, we mentioned that 0 is a limit point of A.
We claim that no other point in R is a limit point of B. To see why, for any 1

n ∈ R, there exists ε > 0 such that(
1
n
− ε,

1
n
+ ε

)
∩A =

{
1
n

}
.

This implies that for any n ∈N, 1
n is isolated in A. Since B contains all its limit points, then B is closed in R. □

Example 5.34 (Bartle and Sherbert p. 333 Question 18). Show that if F ⊆R is a closed non-empty set that
is bounded above, then supF ∈ F .

Solution. Let s = supF . Since F is non-empty and bounded above, by the completeness of R, s exists. For each
n ∈ N, consider the interval

(
s− 1

n ,s
]
. By definition of supremum, s is the least upper bound, so s− 1

n cannot
be an upper bound for F . Hence, for every n, there exists an element xn ∈ F such that

s− 1
n
< xn ≤ s.

This produces a sequence {xn}n∈N in F . The inequality

0 ≤ s− xn <
1
n

implies that
lim
n→∞

(s− xn) = 0 so lim
n→∞

xn = s.

Since F is closed, it contains all its limit points. The sequence {xn}n∈N is contained in F and converges to s.
Therefore, the limit s must belong to F . □

Definition 5.14 (interior point). A point x ∈ R is said to be an interior point of A ⊆ R in case there is
a neighbourhood V of x such that V ⊆ A.

Definition 5.15 (boundary point). A point x ∈R is said to be a boundary point of A ⊆R in case every
neighbourhood V of x contains points in A and points in A′.

Example 5.35 (Bartle and Sherbert p. 332 Question 11). Show that a set

G ⊆ R is open if and only if it does not contain any of its boundary points.

Solution. For the forward direction, suppose G ⊆R is open. Since G is open, then for every x ∈ G, there exists
ε > 0 such that (x− ε,x+ ε)⊆ G. Suppose on the contrary that there exists a point x ∈ G that is also a boundary
point of G. Then, every neighbourhood of x must intersect R\G. However, (x− ε,x+ ε) does not intersect G,
contradicting the assumption that x is a boundary point.



MA2108 MATHEMATICAL ANALYSIS I Page 139 of 148

For the reverse direction, suppose G does not contain any of its boundary points. That is, G∩ ∂G = /0, where
∂G denotes the boundary of G. We wish to show that G is open. Suppose on the contrary that G is not open.
Then, there exists at least one point x ∈ G for which no open interval around x is entirely contained in G. That
is to say, for every ε > 0,

(x− ε,x+ ε) contains points that are not in G.

Hence, (x− ε,x+ ε)∩R \G ̸= /0. It follows that x is a boundary point of G, i.e. x ∈ ∂G. This contradicts our
assumption that G contains no boundary points, and the result follows. □

Similar to Example 5.35, one can show that a set F ⊆R is closed if and only if it contains all of its boundary
points.

Definition 5.16 (interior). Let X be a topological space. If A ⊆ X , let

Int(A) or A◦ be the union of all open sets that are contained in A.

The set A◦ is called the interior of A.

Example 5.36 (Bartle and Sherbert p. 332 Question 13). If A ⊆R, show that A◦ is an open set, that it is the
largest open set contained in A, and that a point z belongs to A◦ if and only if z is an interior point of A.

Solution. We first prove that A◦ is an open set, i.e. the union of all open sets that are contained in A is also open
in A. Let x ∈ A◦. Then there exists an open set U ⊆ A such that x ∈U . Since U is open, there exists ε > 0 such
that Vε (x) ⊆ U . But U ⊆ A◦ (since A◦ is the union of all such open sets), hence Vε(x) ⊆ A◦. This shows that
every point x ∈ A◦ has an open neighbourhood in A◦, so A◦ is open.

We then show that A◦ is the largest open set contained in A. Let U ⊆ A be an arbitrary open set. Since A◦

by definition is the union of all open sets that are contained in A, then U ⊆ A◦, so A◦ contains every open set
contained in A.

Lastly, we prove that
z ∈ A◦ if and only if z is an interior point of A.

Suppose z ∈ A◦. Then, z ∈ Ai, where Ai ⊆ A is some open set. In fact, the forward and backward direction follow
immediately from the definition of an interior point (Definition 5.14). □

Example 5.37 (Bartle and Sherbert p. 333 Question 14). Using the notation of Example 5.36, let A,B be
sets in R. Show that

A◦ ⊆ A and (A◦)◦ = A◦ and (A∩B)◦ = A◦∩B◦.

Show also that A◦∪B◦ ⊆ (A∪B)◦, and give an example to show that the inclusion may be proper.

Solution. We first prove that A◦ ⊆ A. Let x ∈ A◦ be arbitrary. Then, x ∈ Ai, where Ai is an open set contained in
A. Hence, x ∈ A, so it follows that A◦ ⊆ A.

We then prove that (A◦)◦ = A◦. Let x ∈ (A◦)◦. Suppose x ∈ (A◦)◦. By definition of the interior, there exists
an open set U such that

x ∈U and U ⊆ A◦.

Since U ⊆ A◦, then x ∈ A◦, so the forward inclusion holds. As for the reverse inclusion, suppose y ∈ A◦. Then,
there exists an open set V such that y ∈V ⊆ A◦. So, y ∈ (A◦)◦, and the result follows.
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We then prove that (A∩B)◦ = A◦ ∩ B◦. For the forward inclusion, suppose x ∈ (A∩B)◦. Then, x is in the
union of all open sets contained in A∩B. In particular, there exists an open set U such that x ∈U ⊆ A∩B. Since
x ∈ A∩B, then x ∈ A and x ∈ B. Since

x ∈ A then x ∈ some open set contained in A.

In particular, x ∈ A◦. Similarly, one can deduce that x ∈ B◦. It follows that x ∈ A◦∩B◦. One can prove the reverse
inclusion in a similar manner.

Lastly, we prove that A◦ ∪B◦ ⊆ (A∪B)◦. Suppose x ∈ A◦ ∪B◦. Then, x ∈ A◦ or x ∈ B◦. If x ∈ A◦, then x ∈ U
for some open set contained in A. Hence, x ∈ A. One can then show that x ∈ A or x ∈ B, so x ∈ A∪B. Hence,
x ∈ (A∪B)◦.

In fact, the inclusion can be proper. Let A = [0,1] and B = [1,2]. Then,

A◦ = (0,1) and B◦ = (1,2) so A◦∪B◦ = (0,1)∪ (1,2) .

However,
A∪B = [0,2] so (A∪B)◦ = (0,2) .

This shows that 1 ∈ (A∪B)◦ but 1 ̸∈ A◦∪B◦. □

Similar to Definition 5.16, we give the definition of the closure of a set (Definition 5.17).

Definition 5.17 (closure). Let X be a topological space. If A ⊆ X , let

Cl(A) or A− or A be the intersection of all closed sets containing A.

The set A− is called the closure of A.

Similar to Example 5.37, we have the following example (Example 5.38).

Example 5.38 (Bartle and Sherbert p. 333 Question 16). Let A and B be sets in R. Show that we have

A ⊆ A− and
(
A−)− = A− and (A∪B)− = A−∪B−.

Show that (A∩B)− ⊆ A−∩B−, and give an example to show that the inclusion may be proper.

Solution. We first prove that A ⊆ A−. By definition, the closure refers to the intersection of all closed sets
containing A. Since A is included in this intersection, it follows that A ⊆ A−.

We then prove that (A−)
−
= A−. Recall that a set A is said to be closed if it contains all its limit points,

i.e. A = A−. The closure A− of any set A is by definition closed. Taking the closure of A− does not add any new
points, so (A−)

−
= A−.

We then prove that (A∪B)− = A− ∪ B−. For the forward inclusion, let x ∈ (A∪B)−. By definition, every
open neighbourhood U of x intersects A ∪ B. Hence, for every open neighbourhood U containing x, either
U ∩ A ̸= /0 or U ∩ B ̸= /0. This implies that x is either a point of A− or B−, so x ∈ A− or x ∈ B−. Hence,
x ∈ A−∪B−. As for the reverse inclusion, let x ∈ A−∪B−. Then, either x ∈ A− or x ∈ B−. In either case, every
open neighbourhood U of x intersects A (or B, respectively). Therefore, U intersects A∪B. Hence, x ∈ A∪B. It
follows that (A∪B)− = A−∪B−.
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Lastly, we prove that (A∩B)− ⊆ A−∩B−. Let x ∈ (A∩B)−. Then, every open neighbourhood U of x intersects
A∩B, which means that there is some point y ∈ U such that y ∈ A and y ∈ B. Hence, U also intersects A
and intersects B separately. Therefore, x is in both A− and B−, implying that x ∈ A− ∩ B−. It follows that
(A∩B)− ⊆ A−∩B−.

However, the inclusion may be proper. To see why, let A = (0,1) and B = (1,2). Then, A ∩ B = /0 so
(A∩B)− = /0 but A− = [0,1] and B− = [1,2], for which A− ∩B− = {1}. This shows that the inclusion can
be proper. □

Example 5.39 (Bartle and Sherbert p. 333 Question 17). Give an example of

a set A ⊆ R such that A◦ = /0 and A− = R.

Solution. We claim that A = Q works. To see why, A◦ consists of all points where there is an open interval
around them completely contained in A. However, any open interval in R contains irrational numbers. Thus, no
open interval can lie entirely within Q, implying that Q◦ = /0.

We then prove that Q− = R. Since Q is dense in R (every real number is the limit of a sequence of rationals),
the closure of Q is R. □

Definition 5.18 (dense subset). Let X be a topological space. We say that

A is dense in X if and only if A = X .

Proposition 5.8. Int(A)⊆ A ⊆ A

Proposition 5.9. The following hold:
(i) Int(A) = A if and only if A is open

(ii) A = A if and only if A is closed

Theorem 5.6. Let A be a subset of a topological space X . Then,

x ∈ A if and only if every open set U containing x intersects A.

Proof. We shall prove the contrapositive statement instead. That is,

x ̸∈ A if and only if there exists an open set U containing x that does not intersect A.

For the forward direction, suppose x ̸∈ A. Then, the set X \A is an open set containing x that does not intersect
A. For the reverse direction, suppose there exists an open set U containing x that does not intersect A. Then,
X \U is a closed set containing A and x ̸∈ X \U . Hence, A ⊆ X \U , which implies that x ̸∈ A.

Definition 5.19 (neighbourhood). Let X be a topological space and let x ∈ X . A neighbourhood of x
is an open set containing set. More generally,

a neighbourhood of any subset A ⊆ X is an open set U of X such that A ⊆U.
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Definition 5.20 (limit point). Let X be a topological space. Let A ⊆ X . A point x ∈ X is a limit point
of A if and only if every open neighbourhood of x intersects A in some point other than x itself. That is
to say,

for any open U ⊆ X with x ∈U oen has (U \{x})∩A ̸= /0.

Let A′ denote the set of all limit points of A.

Example 5.40. If A = (0,1], then A′ = [0,1].

Example 5.41. If B =
{1

n : n ∈ N
}

, then B′ = {0}.

Example 5.42. If C = {0}∪ (1,2), then C′ = [1,2].

Example 5.43. Other basic examples include Q′ = R and N′ = /0.

Theorem 5.7. A = A∪A′

Proof. For the reverse inclusion, we have A ⊆ A by Proposition 5.8. If x ∈ A′, then every open neighbourhood
of x intersects A, so x ∈ A. Hence, A′ ⊆ A.

For the forward inclusion, suppose x ∈ A. Then, x ∈ A∪A′. If x ∈ A \A, then every open neighbourhood U
of x intersects A necessarily in a point different from x because x ̸∈ A. So, x ∈ A′ and hence x ∈ A∪A′.

Corollary 5.4 (limit point criterion). A set A is closed if and only if it contains all its limit points. That
is, A′ ⊆ A.

Example 5.44 (Bartle and Sherbert p. 337 Question 10). Let K ̸= /0 be a compact set in R. Show that infK
and supK exist and belong to K.

Solution. Since K is a non-empty compact subset of R, by the Heine-Borel theorem, K is closed and bounded.
It suffices to prove that supK exists and supK ∈ K (a similar argument can be applied to infK). Because K is
bounded, by the completeness property of R, supK exists.

We then prove that supK ∈ K. Let α = supK. Suppose on the contrary that α ̸∈ K. Since K is closed, then
it contains all of its limit points. By the definition of supremum, since α = supK, then

for every ε there exists x ∈ K such that α − ε < x ≤ α.

As such, we can construct a sequence {xn}n∈N such that

xn > α − 1
n
.

By compactness, every sequence xn has a convergent subsequence whose limit is in K. In particular, by the
construction of xn, the limit must satisfy x = α , which contradicts our earlier assumption that α ̸∈ K. The result
follows. □

Example 5.45 (Bartle and Sherbert p. 337 Question 11). Let K ̸= /0 be compact in R and let c ∈ R. Prove
that there exists a point a ∈ K such that

|c−a|= inf{|c− x| : x ∈ K}.
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Solution. Consider

f : R→ R defined by f (x) = |c− x| .

This function is continuous because the absolute value function and subtraction are continuous operations.
Since K ⊆ R is compact, then K is closed and bounded by the Heine-Borel theorem. Moreover, the restriction
of f to K is also continuous. For continuous functions on compact sets, they attain their minimum and maximum
values by the extreme value theorem. So, there exists a ∈ K such that

f (a) = min{ f (x) : x ∈ K}.

This minimum value is exactly
|c−a|= inf{|c− x| : x ∈ K},

and the result follows. □

Similar to Example 5.45, one can show that for any subset K ̸= /0 compact in R and c ∈ R, there exists a
point b ∈ K such that

|c−b|= sup{|c− x| : x ∈ K}.

Example 5.46 (Bartle and Sherbert p. 337 Question 14). If K1 and K2 are disjoint non-empty compact sets,
show that there exist ki ∈ Ki such that

0 < |k1 − k2|= inf{|x1 − x2| : xi ∈ Ki}.

Solution. Let
d = inf{|x1 − x2| : x1 ∈ K1, x2 ∈ K2}.

Define
f : K1 ×K2 → codomain f where f (x1,x2) = |x1 − x2|

Since K1 and K2 are compact, K1×K2 is also compact. f is continuous, so it attains its minimum by the extreme
value theorem. As such, there exist k1 ∈ K1 and k2 ∈ K2 such that

f (k1,k2) = |k1 − k2|= d.

Since K1 ∩K2 = /0 , there is no point that is common to both sets, so d > 0. The result follows. □

Example 5.47 (Bartle and Sherbert p. 337 Question 15). Give an example of disjoint closed sets F1,F2 such
that

inf{|x1 − x2| : xi ∈ Fi}= 0.

Solution. Let F1 = N which is closed in R, and

F2 =

{
n+

1
2n

: n ∈ N
}

which is also closed in R.

Note that F1 ∩F2 = /0 but the infimum of the mentioned set is inf
∣∣ 1

2n

∣∣ over all n ∈ N, which is 0. □

Definition 5.21 (Hausdorff space). A topological space X is said to be Hausdorff if and only if for
each pair x1,x2 of distinct points of X , there exist disjoint open neighbourhoods U1 and U2 of x1 and x2

respectively (Figure 14).
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X

x

U

y

V

Figure 14: A Hausdorff space X

Example 5.48. Suppose the topology of X is trivial. Then,

X is Hausdorff if and only if X is empty or X is a singleton.

Example 5.49. Suppose the topology of X is discrete. Then X is Hausdorff. To see why, given distinct points
x1,x2 ∈ X , take U1 = {x1} and U2 = {x2}, where both U1 and U2 are open in the discrete topology and U1∩U2 =

/0.

Example 5.50. Suppose X is a metric space (with the metric topology). Then, X is Hausdorff. To see why,
given distinct points x1,x2 ∈ X , we have r = d (x1,x2) > 0. Then, take open balls U1 = B

(
x1,

r
2

)
and U2 =

B
(
x2,

r
2

)
in X which are both open. Lastly, we need to show that U1∩U2 = /0. Note that there exists y ∈U1∩U2,

then

r = d (x1,x2)≤ d (x1,y)+d (y,x2)<
r
2
+

r
2
= r

which leads to a contradiction.

Proposition 5.10. A subspace of a Hausdorff space is also Hausdorff.

Proof. Let X be a Hausdorff space. Then, for all distinct points x,y ∈ X , we can construct two open balls U and
V centred at x and y respectively such that x ̸∈V and y ̸∈U . Suppose Y is a subspace of X . Then, consider two
points x′,y′ ∈ Y . Consider the sets

U ′ = Y ∩U and V ′ = Y ∩V which are open in the subspace topology on Y.

X

Y

x

U

y

V

x′

U ′ = Y ∩U

y′

V ′ = Y ∩V
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So,
U ′∩V ′ =U ∩V ∩Y ⊆U ∩V = /0.

So, there exists an open set U ′ ⊆Y such that if x′ ∈U ′, then x′ /∈V ′. The same symmetric argument holds for y′,
i.e. there exists an open set V ′ ⊆ Y such that if y′ ∈V ′, then y′ /∈U ′. We conclude that Y is also Hausdorff.

Definition 5.22. Let X be a topological space. Let {xn}n∈N be a sequence in X . We say that {xn}n∈N
converges to x in X and that x is a limit of the sequence if and only if

for all open neighbourhoods U of x there exists N ∈ N such that for all n ≥ N we have xn ∈U.

Example 5.51. If the topology of X is trivial, then for any sequence {xn}n∈N in X , for any x ∈ X , one has
{xn}n∈N → x in X , so the limit of a sequence is not unique in a general topological space.

Example 5.52. Suppose the topology of X is discrete. Then, for any sequence {xn}n∈N in X , for any x ∈ X ,
one has {xn}n∈N → x in X if and only if {xn}n∈N is eventually constant of value x.

Example 5.53. Suppose X is a metric space. Then, for any sequence {xn}n∈N in X , for any x ∈ X , one has
{xn}n∈N → x in X if and only if for every ε > 0, there exists N ∈N such that for all n ≥ N, one has d (xn,x)< ε .

Example 5.54 (Munkres p. 171 Question 5). Let A and B be disjoint compact subspaces of the Hausdorff
space X . Show that there exist disjoint open sets U and V containing A and B, respectively.

Solution. Let A and B be disjoint compact subspaces of X . Let x ∈ A. Since x /∈ B (because A and B are disjoint),
there exist disjoint open sets Ux and Vx such that

x ∈Ux and B ⊆Vx.

The collection {Ux : x ∈ A} is an open cover of A. Since A is compact, there exists a finite subcover
{Ux1 ,Ux2 , . . . ,Uxn} that covers A. That is,

A ⊆Ux1 ∪Ux2 ∪·· ·∪Uxn .

Define
U =Ux1 ∪Ux2 ∪·· ·∪Uxn .

Then U is an open set containing A. Similarly, define

V =Vx1 ∩Vx2 ∩·· ·∩Vxn .

Since each Vxi is open and contains B, the set V is an open set containing B. Moreover, U ∩V = /0 because for
each 1 ≤ i ≤ n, Uxi ∩Vxi = /0. The result follows. □

Lemma 5.3. Let K be a compact set in a Hausdorff space X . Then, K is closed.

Proof. Fix x ∈ X \K. Since X is Hausdorff, then for each y ∈ K, there exist disjoint open sets Uy and Vy such
that x ∈Uy and y ∈Vy. Let {Vy : y ∈ K} be an open cover of K. Since K is compact, then this open cover admits
a finite subcover, say {Vy : y ∈ F} for some finite subset of K. Let

U =
⋂
y∈F

Uy

which is an open neighbourhood of x disjoint from K. Since x was an arbitrary point of X \ K, then K is
closed.
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Example 5.55 (MA2108 AY24/25 Sem 2 Problem Set 5 Question 21). Show that if

f : X → Y is continuous where X is compact and Y is Hausdorff,

then f is a closed map (that is, f carries closed sets to closed sets).

Solution. Let A ⊆ X be a closed set. Since X is compact, the closed subset A is also compact. Because f is
continuous, the image f (A) is compact in Y . Since Y is Hausdorff, then f (A) is closed since every compact set
in a Hausdorff space is closed (Lemma 5.3). Hence, f (A) is closed in Y . This shows that f carries closed sets
to closed sets, and thus f is a closed map. □

Theorem 5.8. Let X be a Hausdorff space and let {xn}n∈N be a sequence in X . Then, {xn}n∈N converges
to at most one point in x.

Proof. Suppose there exist distinct x,x′ ∈ X such that xn → x and xn → x′. If x ̸= x′ in X , because X is Hausdorff,
then there exist U,U ′ open in X such that

x ∈U and x′ ∈U ′ and U ∩U ′ = /0.

Since xn → x, there exists N1 ∈N such that for all n ≥ N1, we have xn ∈U . Similarly, since xn → x′, there exists
N2 ∈ N such that for all n ≥ N2, we have xn ∈ U ′. Let N = max{N1,N2}. Then for all n ≥ N, we must have
xn ∈U ∩U ′. But this contradicts the fact that U ∩U ′ = /0. So, our assumption that a sequence can converge to
two distinct points must be false.

Theorem 5.9 (Heine-Borel theorem). Let K ⊆ Rn be a subset of Rn. Then,

K is compact if and only if K is closed and bounded in Rn.

Proof. Suppose on the contrary that I0 = [a,b] is not compact. Then, there exists an open cover {Uα}α∈A of
I0 which does not reduce to a finite subcover. Consider the subintervals IL

0 =
[
a, a+b

2

]
and IR

0 =
[a+b

2 ,b
]

of I0.
Then, {Uα}α∈A as an open cover of IL

0 and IR
0 , cannot both reduce to finite subcovers. This is because if

there exist AL,AR ⊆ A such that IL
0 ⊆

⋃
α∈AL

Uα and IR
0 ⊆

⋃
α∈AR

Uα ,

then A0 = AL ∪AR is finite and ⊆ A such that

I0 ⊆
⋃

α∈A0

Uα ,

which is a contradiction. Denote by I1 the subinterval (either IL
0 or IR

0 ) that does not admit a finite subcover. Split
I1 into two halves, which are IL

1 and IR
1 . By the same reasoning, at least one of these halves, call it I2, must also

have the property that no finite subcollection of {Uα}α
covers it. Repeating this process indefinitely produces

a nested sequence of closed intervals
I0 ⊇ I1 ⊇ I2 ⊇ . . . ,

where the length of In is |In|= b−a
2n . Note that

lim
n→∞

|In|= 0.

By the nested interval property in R (Theorem 2.11), the intersection

∞⋂
n=0

In is non-empty.
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In fact, the intersection consists of exactly one point. Let

x0 ∈
∞⋂

n=0

In.

Since {Uα}α∈A is an open cover of I0, there exists some index α0 such that x0 ∈Uα0 . Because Uα0 is open, there
exists ε > 0 such that

(x0 − ε,x0 + ε)⊆Uα0 .

Since the lengths |In| tend to zero, there exists N ∈ N such that the interval IN is completely contained in the
ε-neighbourhood of x0. That is,

IN ⊆ (x0 − ε,x0 + ε)⊆Uα0 .

The interval IN is a member of our nested sequence and, by construction, it was assumed to have no finite
subcover by the members of {Uα}. However, we have just shown that IN is entirely contained in the single open
set Uα0 . This means that the single set Uα0 alone covers IN , providing a finite subcover for IN . This contradicts
our assumption that no finite subcover exists for IN .

Thus, our original assumption that [a,b] is not compact must be false. Therefore, every closed and bounded
interval in R is compact.

The argument above establishes the compactness of closed and bounded intervals in R. To extend this result to
Rn, observe that any closed and bounded subset K ⊂ Rn is contained within a closed n-dimensional box, that
is, a Cartesian product of closed bounded intervals:

K ⊆ [a1,b1]× [a2,b2]× . . .× [an,bn].

Since the finite product of compact spaces is compact (a fact that follows from the Tychonoff theorem† or can
be seen directly in Rn via a similar argument to the one-dimensional case), the box is compact. Moreover, K is
closed as assumed, and a closed subset of a compact set is compact. Hence, K is compact.

Theorem 5.10 (topological generalisation of the extreme value theorem). Let X be a non-empty
compact topological space, and let

f : X → R be a continuous function on X .

Then, there exist p,q ∈ X such that f (p) = sup f (X) and f (q) = inf f (X) in R.

Proof. Since X is non-empty and compact, and f is continuous, then f (X) is a non-empty compact subset of R.
By the Heine-Borel theorem (Theorem 5.9), f (X) is non-empty, closed and bounded. Since f (X) is non-empty
and bounded, by the least upper bound property of R, sup f (X) and inf f (X) exist in R. Also, since f (X) is
closed, they belong to f (X).

Theorem 5.11 (topological generalisation of the intermediate value theorem). Let X be any
connected topological space, and let

f : X → R be a continuous function on X .

Suppose a,b ∈ X such that f (a) ≤ f (b) in R. Then, for all t ∈ R with f (a) ≤ t ≤ f (b), there exists
p ∈ X such that f (p) = t in R.

†Will encounter in MA3209. Tychonoff’s theorem states that the arbitrary product of compact spaces is also compact.
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Proof. Since X is connected and f is continuous, then f (X) is a connected subset of R by Theorem 5.1. Hence,
f (X) is convex, i.e. f (a)≤ f (b) in f (X), which implies [ f (a) , f (b)]⊆ f (X).
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